From a659cd865c1878dff661a96b72886371e689aadc Mon Sep 17 00:00:00 2001 From: James Betker Date: Sun, 19 Jun 2022 23:12:52 -0600 Subject: [PATCH] All the stuff needed for cheater latent generation --- codes/data/__init__.py | 2 + codes/data/audio/preprocessed_mel_dataset.py | 71 +++++ ...ormer_diffusion_with_point_conditioning.py | 272 ++++++++++++++++++ codes/train.py | 2 +- codes/trainer/injectors/audio_injectors.py | 15 + 5 files changed, 361 insertions(+), 1 deletion(-) create mode 100644 codes/data/audio/preprocessed_mel_dataset.py create mode 100644 codes/models/audio/music/transformer_diffusion_with_point_conditioning.py diff --git a/codes/data/__init__.py b/codes/data/__init__.py index f296a53c..ac426ba1 100644 --- a/codes/data/__init__.py +++ b/codes/data/__init__.py @@ -95,6 +95,8 @@ def create_dataset(dataset_opt, return_collate=False): from data.audio.unsupervised_audio_dataset import UnsupervisedAudioDataset as D elif mode == 'unsupervised_audio_with_noise': from data.audio.audio_with_noise_dataset import AudioWithNoiseDataset as D + elif mode == 'preprocessed_mel': + from data.audio.preprocessed_mel_dataset import PreprocessedMelDataset as D elif mode == 'grand_conjoined_voice': from data.audio.grand_conjoined_dataset import GrandConjoinedDataset as D from data.zero_pad_dict_collate import ZeroPadDictCollate as C diff --git a/codes/data/audio/preprocessed_mel_dataset.py b/codes/data/audio/preprocessed_mel_dataset.py new file mode 100644 index 00000000..3c8e813d --- /dev/null +++ b/codes/data/audio/preprocessed_mel_dataset.py @@ -0,0 +1,71 @@ +import os +from pathlib import Path + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.data +import torchaudio +import torchvision +from tqdm import tqdm + +from utils.util import opt_get + + +class PreprocessedMelDataset(torch.utils.data.Dataset): + + def __init__(self, opt): + path = opt['path'] + cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case. + if os.path.exists(cache_path): + self.paths = torch.load(cache_path) + else: + path = Path(path) + self.paths = [str(p) for p in path.rglob("*.npz")] + torch.save(self.paths, cache_path) + self.pad_to = opt_get(opt, ['pad_to_samples'], 10336) + + def __getitem__(self, index): + with np.load(self.paths[index]) as npz_file: + mel = torch.tensor(npz_file['arr_0']) + assert mel.shape[-1] <= self.pad_to + padding_needed = self.pad_to - mel.shape[-1] + mask = torch.zeros_like(mel) + if padding_needed > 0: + mel = F.pad(mel, (0,padding_needed)) + mask = F.pad(mask, (0,padding_needed), value=1) + + output = { + 'mel': mel, + 'mel_lengths': torch.tensor(mel.shape[-1]), + 'mask': mask, + 'mask_lengths': torch.tensor(mask.shape[-1]), + 'path': self.paths[index], + } + return output + + def __len__(self): + return len(self.paths) + + +if __name__ == '__main__': + params = { + 'mode': 'preprocessed_mel', + 'path': 'Y:\\separated\\large_mels', + 'cache_path': 'Y:\\separated\\large_mels.pth', + 'pad_to_samples': 10336, + 'phase': 'train', + 'n_workers': 0, + 'batch_size': 16, + } + from data import create_dataset, create_dataloader + + ds = create_dataset(params) + dl = create_dataloader(ds, params) + i = 0 + for b in tqdm(dl): + #pass + torchvision.utils.save_image((b['mel'].unsqueeze(1)+1)/2, f'{i}.png') + i += 1 + if i > 20: + break diff --git a/codes/models/audio/music/transformer_diffusion_with_point_conditioning.py b/codes/models/audio/music/transformer_diffusion_with_point_conditioning.py new file mode 100644 index 00000000..68b09b4a --- /dev/null +++ b/codes/models/audio/music/transformer_diffusion_with_point_conditioning.py @@ -0,0 +1,272 @@ +import itertools +from time import time + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from models.arch_util import ResBlock, AttentionBlock +from models.audio.music.gpt_music2 import UpperEncoder, GptMusicLower +from models.audio.music.music_quantizer2 import MusicQuantizer2 +from models.audio.tts.lucidrains_dvae import DiscreteVAE +from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear +from models.diffusion.unet_diffusion import TimestepBlock +from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \ + FeedForward +from trainer.networks import register_model +from utils.util import checkpoint, print_network + + +def is_latent(t): + return t.dtype == torch.float + +def is_sequence(t): + return t.dtype == torch.long + + +class MultiGroupEmbedding(nn.Module): + def __init__(self, tokens, groups, dim): + super().__init__() + self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)]) + + def forward(self, x): + h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)] + return torch.cat(h, dim=-1) + + +class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock): + def forward(self, x, emb, rotary_emb): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb, rotary_emb) + else: + x = layer(x, rotary_emb) + return x + + +class SubBlock(nn.Module): + def __init__(self, inp_dim, contraction_dim, heads, dropout): + super().__init__() + self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout) + self.attnorm = nn.LayerNorm(contraction_dim) + self.ff = FeedForward(inp_dim+contraction_dim, dim_out=contraction_dim, mult=2, dropout=dropout) + self.ffnorm = nn.LayerNorm(contraction_dim) + + def forward(self, x, rotary_emb): + ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb) + ah = F.gelu(self.attnorm(ah)) + h = torch.cat([ah, x], dim=-1) + hf = checkpoint(self.ff, h) + hf = F.gelu(self.ffnorm(hf)) + h = torch.cat([h, hf], dim=-1) + return h + + +class ConcatAttentionBlock(TimestepBlock): + def __init__(self, trunk_dim, contraction_dim, time_embed_dim, heads, dropout): + super().__init__() + self.prenorm = RMSScaleShiftNorm(trunk_dim, embed_dim=time_embed_dim, bias=False) + self.block1 = SubBlock(trunk_dim, contraction_dim, heads, dropout) + self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, heads, dropout) + self.out = nn.Linear(contraction_dim*4, trunk_dim, bias=False) + self.out.weight.data.zero_() + + def forward(self, x, conditioning, timestep_emb, rotary_emb): + h = self.prenorm(x, norm_scale_shift_inp=timestep_emb) + h = torch.cat([conditioning, h], dim=1) + h = self.block1(h, rotary_emb) + h = self.block2(h, rotary_emb) + h = self.out(h[:,:,x.shape[-1]:]) + return h[:, 1:] + x + + +class TransformerDiffusion(nn.Module): + """ + A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way? + """ + def __init__( + self, + in_channels=256, + out_channels=512, # mean and variance + model_channels=1024, + contraction_dim=256, + time_embed_dim=256, + num_layers=8, + rotary_emb_dim=32, + input_cond_dim=1024, + num_heads=8, + dropout=0, + use_fp16=False, + # Parameters for regularization. + unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training. + ): + super().__init__() + + self.in_channels = in_channels + self.model_channels = model_channels + self.time_embed_dim = time_embed_dim + self.out_channels = out_channels + self.dropout = dropout + self.unconditioned_percentage = unconditioned_percentage + self.enable_fp16 = use_fp16 + + self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1) + + self.time_embed = nn.Sequential( + linear(time_embed_dim, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.conditioner = nn.Linear(input_cond_dim, model_channels) if input_cond_dim != model_channels else nn.Identity() + self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels)) + self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim) + self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_embed_dim, num_heads, dropout) for _ in range(num_layers)]) + + self.out = nn.Sequential( + normalization(model_channels), + nn.SiLU(), + zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)), + ) + + self.debug_codes = {} + + def get_grad_norm_parameter_groups(self): + attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers])) + attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers])) + ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers])) + ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers])) + blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers])) + groups = { + 'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])), + 'blk1_attention_layers': attn1, + 'blk2_attention_layers': attn2, + 'attention_layers': attn1 + attn2, + 'blk1_ff_layers': ff1, + 'blk2_ff_layers': ff2, + 'ff_layers': ff1 + ff2, + 'block_out_layers': blkout_layers, + 'rotary_embeddings': list(self.rotary_embeddings.parameters()), + 'out': list(self.out.parameters()), + 'x_proj': list(self.inp_block.parameters()), + 'layers': list(self.layers.parameters()), + 'time_embed': list(self.time_embed.parameters()), + } + return groups + + def forward(self, x, timesteps, conditioning_input, conditioning_free=False): + unused_params = [] + if conditioning_free: + cond = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1) + else: + cond = self.conditioner(conditioning_input) + # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. + if self.training and self.unconditioned_percentage > 0: + unconditioned_batches = torch.rand((cond.shape[0], 1, 1), + device=cond.device) < self.unconditioned_percentage + cond = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(cond.shape[0], 1, 1), + cond) + unused_params.append(self.unconditioned_embedding) + + with torch.autocast(x.device.type, enabled=self.enable_fp16): + blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim)) + x = self.inp_block(x).permute(0,2,1) + + rotary_pos_emb = self.rotary_embeddings(x.shape[1]+1, x.device) + for layer in self.layers: + x = checkpoint(layer, x, cond, blk_emb, rotary_pos_emb) + + x = x.float().permute(0,2,1) + out = self.out(x) + + # Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. + extraneous_addition = 0 + for p in unused_params: + extraneous_addition = extraneous_addition + p.mean() + out = out + extraneous_addition * 0 + + return out + + +class ConditioningEncoder(nn.Module): + def __init__(self, + cond_dim, + embedding_dim, + attn_blocks=6, + num_attn_heads=8, + do_checkpointing=False): + super().__init__() + attn = [] + self.init = nn.Conv1d(cond_dim, embedding_dim, kernel_size=1) + for a in range(attn_blocks): + attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing)) + self.attn = nn.Sequential(*attn) + self.dim = embedding_dim + self.do_checkpointing = do_checkpointing + + def forward(self, x): + h = self.init(x) + h = self.attn(h) + return h.mean(dim=2).unsqueeze(1) + + +class TransformerDiffusionWithConditioningEncoder(nn.Module): + def __init__(self, **kwargs): + super().__init__() + self.internal_step = 0 + self.diff = TransformerDiffusion(**kwargs) + self.conditioning_encoder = ConditioningEncoder(256, kwargs['model_channels']) + self.encoder = UpperEncoder(256, 1024, 256).eval() + for p in self.encoder.parameters(): + p.DO_NOT_TRAIN = True + p.requires_grad = False + + def forward(self, x, timesteps, true_cheater, conditioning_input=None, disable_diversity=False, conditioning_free=False): + cond = self.conditioning_encoder(true_cheater) + diff = self.diff(x, timesteps, conditioning_input=cond, conditioning_free=conditioning_free) + return diff + + def get_debug_values(self, step, __): + self.internal_step = step + return {} + + def get_grad_norm_parameter_groups(self): + groups = self.diff.get_grad_norm_parameter_groups() + groups['conditioning_encoder'] = list(self.conditioning_encoder.parameters()) + return + + def before_step(self, step): + scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \ + list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers])) + # Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes + # higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than + # directly fiddling with the gradients. + for p in scaled_grad_parameters: + if hasattr(p, 'grad') and p.grad is not None: + p.grad *= .2 + + +@register_model +def register_transformer_diffusion_with_point_conditioning(opt_net, opt): + return TransformerDiffusion(**opt_net['kwargs']) + + +@register_model +def register_tfdpc_with_conditioning_encoder(opt_net, opt): + return TransformerDiffusionWithConditioningEncoder(**opt_net['kwargs']) + + +def test_cheater_model(): + clip = torch.randn(2, 256, 400) + cl = torch.randn(2, 1, 400) + ts = torch.LongTensor([600, 600]) + + # For music: + model = TransformerDiffusionWithConditioningEncoder(model_channels=1024) + print_network(model) + o = model(clip, ts, cl) + pg = model.get_grad_norm_parameter_groups() + + +if __name__ == '__main__': + test_cheater_model() diff --git a/codes/train.py b/codes/train.py index 033bb894..42027511 100644 --- a/codes/train.py +++ b/codes/train.py @@ -339,7 +339,7 @@ class Trainer: if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_gpt.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_cheater_gen.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') args = parser.parse_args() opt = option.parse(args.opt, is_train=True) diff --git a/codes/trainer/injectors/audio_injectors.py b/codes/trainer/injectors/audio_injectors.py index e0cb97d8..7634effb 100644 --- a/codes/trainer/injectors/audio_injectors.py +++ b/codes/trainer/injectors/audio_injectors.py @@ -378,5 +378,20 @@ class ChannelClipInjector(Injector): return {self.output: inp[:,self.lo:self.hi]} +class MusicCheaterLatentInjector(Injector): + def __init__(self, opt, env): + super().__init__(opt, env) + from models.audio.music.gpt_music2 import UpperEncoder + self.encoder = UpperEncoder(256, 1024, 256).eval() + self.encoder.load_state_dict(torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu'))) + + def forward(self, state): + with torch.no_grad(): + mel = state[self.input] + self.encoder = self.encoder.to(mel.device) + proj = self.encoder(mel) + return {self.output: proj} + + if __name__ == '__main__': print('hi') \ No newline at end of file