forked from mrq/DL-Art-School
Fix codes when inferring from dvae
This commit is contained in:
parent
d016a2fbad
commit
a6f0f854b9
|
@ -1,3 +1,6 @@
|
|||
import math
|
||||
from abc import abstractmethod
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.init as init
|
||||
|
@ -72,95 +75,491 @@ def default_init_weights(module, scale=1):
|
|||
elif isinstance(m, nn.Linear):
|
||||
kaiming_init(m, a=0, mode='fan_in', bias=0)
|
||||
m.weight.data *= scale
|
||||
"""
|
||||
Various utilities for neural networks.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
'''Residual block with BN
|
||||
---Conv-BN-ReLU-Conv-+-
|
||||
|________________|
|
||||
'''
|
||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||
class SiLU(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * th.sigmoid(x)
|
||||
|
||||
def __init__(self, nf=64):
|
||||
super(ResidualBlock, self).__init__()
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
self.BN1 = nn.BatchNorm2d(nf)
|
||||
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
self.BN2 = nn.BatchNorm2d(nf)
|
||||
|
||||
# initialization
|
||||
initialize_weights([self.conv1, self.conv2], 0.1)
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def update_ema(target_params, source_params, rate=0.99):
|
||||
"""
|
||||
Update target parameters to be closer to those of source parameters using
|
||||
an exponential moving average.
|
||||
|
||||
:param target_params: the target parameter sequence.
|
||||
:param source_params: the source parameter sequence.
|
||||
:param rate: the EMA rate (closer to 1 means slower).
|
||||
"""
|
||||
for targ, src in zip(target_params, source_params):
|
||||
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def normalization(channels):
|
||||
"""
|
||||
Make a standard normalization layer.
|
||||
|
||||
:param channels: number of input channels.
|
||||
:return: an nn.Module for normalization.
|
||||
"""
|
||||
groups = 32
|
||||
if channels <= 16:
|
||||
groups = 8
|
||||
elif channels <= 64:
|
||||
groups = 16
|
||||
while channels % groups != 0:
|
||||
groups = int(groups / 2)
|
||||
assert groups > 2
|
||||
return GroupNorm32(groups, channels)
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if flag:
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
"""
|
||||
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spacial_dim: int,
|
||||
embed_dim: int,
|
||||
num_heads_channels: int,
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(
|
||||
torch.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
||||
)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
out = self.lrelu(self.BN1(self.conv1(x)))
|
||||
out = self.BN2(self.conv2(out))
|
||||
return identity + out
|
||||
b, c, *_spatial = x.shape
|
||||
x = x.reshape(b, c, -1) # NC(HW)
|
||||
x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||
x = x + self.positional_embedding[None, :, :x.shape[-1]].to(x.dtype) # NC(HW+1)
|
||||
x = self.qkv_proj(x)
|
||||
x = self.attention(x)
|
||||
x = self.c_proj(x)
|
||||
return x[:, :, 0]
|
||||
|
||||
class ResidualBlockSpectralNorm(nn.Module):
|
||||
'''Residual block with Spectral Normalization.
|
||||
---SpecConv-ReLU-SpecConv-+-
|
||||
|________________|
|
||||
'''
|
||||
|
||||
def __init__(self, nf, total_residual_blocks):
|
||||
super(ResidualBlockSpectralNorm, self).__init__()
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
|
||||
self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
initialize_weights([self.conv1, self.conv2], 1)
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if factor is None:
|
||||
if dims == 1:
|
||||
self.factor = 4
|
||||
else:
|
||||
self.factor = 2
|
||||
else:
|
||||
self.factor = factor
|
||||
if use_conv:
|
||||
ksize = 3
|
||||
pad = 1
|
||||
if dims == 1:
|
||||
ksize = 5
|
||||
pad = 2
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, ksize, padding=pad)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
out = self.lrelu(self.conv1(x))
|
||||
out = self.conv2(out)
|
||||
return identity + out
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
x = F.interpolate(x, scale_factor=self.factor, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class ResidualBlock_noBN(nn.Module):
|
||||
'''Residual block w/o BN
|
||||
---Conv-ReLU-Conv-+-
|
||||
|________________|
|
||||
'''
|
||||
|
||||
def __init__(self, nf=64):
|
||||
super(ResidualBlock_noBN, self).__init__()
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
|
||||
# initialization
|
||||
initialize_weights([self.conv1, self.conv2], 0.1)
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
ksize = 3
|
||||
pad = 1
|
||||
if dims == 1:
|
||||
stride = 4
|
||||
ksize = 5
|
||||
pad = 2
|
||||
elif dims == 2:
|
||||
stride = 2
|
||||
else:
|
||||
stride = (1,2,2)
|
||||
if factor is not None:
|
||||
stride = factor
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, ksize, stride=stride, padding=pad
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
out = self.lrelu(self.conv1(x))
|
||||
out = self.conv2(out)
|
||||
return identity + out
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResidualBlockGN(nn.Module):
|
||||
'''Residual block with GroupNorm
|
||||
---Conv-GN-ReLU-Conv-+-
|
||||
|________________|
|
||||
'''
|
||||
class ResBlock(nn.Module):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
|
||||
def __init__(self, nf=64):
|
||||
super(ResidualBlockGN, self).__init__()
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
self.BN1 = nn.GroupNorm(8, nf)
|
||||
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
self.BN2 = nn.GroupNorm(8, nf)
|
||||
:param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout.
|
||||
:param out_channels: if specified, the number of out channels.
|
||||
:param use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the
|
||||
channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param up: if True, use this block for upsampling.
|
||||
:param down: if True, use this block for downsampling.
|
||||
"""
|
||||
|
||||
# initialization
|
||||
initialize_weights([self.conv1, self.conv2], 0.1)
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
out = self.lrelu(self.BN1(self.conv1(x)))
|
||||
out = self.BN2(self.conv2(out))
|
||||
return identity + out
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, kernel_size, padding=padding
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other.
|
||||
|
||||
Originally ported from here, but adapted to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_new_attention_order=False,
|
||||
do_checkpoint=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.do_checkpoint = do_checkpoint
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.norm = normalization(channels)
|
||||
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
if self.do_checkpoint:
|
||||
return checkpoint(self._forward, x, mask)
|
||||
else:
|
||||
return self._forward(x, mask)
|
||||
|
||||
def _forward(self, x, mask):
|
||||
b, c, *spatial = x.shape
|
||||
x = x.reshape(b, c, -1)
|
||||
qkv = self.qkv(self.norm(x))
|
||||
h = self.attention(qkv, mask)
|
||||
h = self.proj_out(h)
|
||||
return (x + h).reshape(b, c, *spatial)
|
||||
|
||||
|
||||
class QKVAttentionLegacy(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv, mask=None):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = torch.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
if mask is not None:
|
||||
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
||||
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
||||
weight = weight * mask
|
||||
a = torch.einsum("bts,bcs->bct", weight, v)
|
||||
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention and splits in a different order.
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv, mask=None):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = torch.einsum(
|
||||
"bct,bcs->bts",
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
if mask is not None:
|
||||
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
||||
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
||||
weight = weight * mask
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
|
||||
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'):
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu, ResidualBlockGN
|
||||
import torch.nn.functional as F
|
||||
|
||||
from trainer.networks import register_model
|
||||
|
|
|
@ -179,6 +179,7 @@ class DiscreteVAE(nn.Module):
|
|||
self,
|
||||
img_seq
|
||||
):
|
||||
self.log_codes(img_seq)
|
||||
image_embeds = self.codebook.embed_code(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
|
@ -227,6 +228,12 @@ class DiscreteVAE(nn.Module):
|
|||
# discretization loss
|
||||
disc_loss = self.discrete_loss(soft_codes)
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
self.log_codes(codes)
|
||||
|
||||
return recon_loss, commitment_loss, disc_loss, out
|
||||
|
||||
def log_codes(self, codes):
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
|
@ -238,8 +245,6 @@ class DiscreteVAE(nn.Module):
|
|||
self.code_ind = 0
|
||||
self.internal_step += 1
|
||||
|
||||
return recon_loss, commitment_loss, disc_loss, out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_lucidrains_dvae(opt_net, opt):
|
||||
|
|
Loading…
Reference in New Issue
Block a user