Extensible trainer (in progress)

This commit is contained in:
James Betker 2020-08-12 08:45:23 -06:00
parent cb316fabc7
commit ab04ca1778
3 changed files with 714 additions and 0 deletions

View File

@ -0,0 +1,661 @@
import logging
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel
import models.networks as networks
from models.steps.steps import create_step
import models.lr_scheduler as lr_scheduler
from models.base_model import BaseModel
from models.loss import GANLoss, FDPLLoss
from apex import amp
from data.weight_scheduler import get_scheduler_for_opt
from .archs.SPSR_arch import ImageGradient, ImageGradientNoPadding
import torch.nn.functional as F
import glob
import random
import torchvision.utils as utils
import os
logger = logging.getLogger('base')
class ExtensibleTrainer(BaseModel):
def __init__(self, opt):
super(ExtensibleTrainer, self).__init__(opt)
if opt['dist']:
self.rank = torch.distributed.get_rank()
else:
self.rank = -1 # non dist training
train_opt = opt['train']
self.mega_batch_factor = 1
self.netG = {}
self.netD = {}
self.networks = []
for name, net in opt['networks'].items():
if net['type'] == 'generator':
new_net = networks.define_G(net)
self.netG[name] = new_net
elif net['type'] == 'discriminator':
new_net = networks.define_D(net)
self.netD[name] = new_net
else:
raise NotImplementedError("Can only handle generators and discriminators")
self.networks.append(new_net)
if self.is_train:
self.mega_batch_factor = train_opt['mega_batch_factor']
if self.mega_batch_factor is None:
self.mega_batch_factor = 1
# Initialize amp.
amp_nets, amp_opts = amp.initialize(self.networks, self.optimizers, opt_level=opt['amp_level'], num_losses=len(self.optimizers))
# self.networks is stored unwrapped. It should never be used for forward() or backward() passes, instead use
# self.netG and self.netD for that.
self.networks = amp_nets
# DataParallel
dnets = []
for anet in amp_nets:
if opt['dist']:
dnet = DistributedDataParallel(anet,
device_ids=[torch.cuda.current_device()],
find_unused_parameters=True)
else:
dnet = DataParallel(anet)
if self.is_train:
dnet.train()
else:
dnet.eval()
dnets.append(dnet)
# Backpush the wrapped networks into the network dicts..
found = 0
for dnet in dnets:
for net_dict in [self.netD, self.netG]:
for k, v in net_dict.items():
if v == dnet:
net_dict[k] = dnet
found += 1
assert found == len(self.networks)
# Initialize the training steps
self.steps = []
for step in opt['steps']:
step = create_step(step, self.netG, self.netD)
self.steps.append(step)
self.optimizers.extend(step.get_optimizers())
# Find the optimizers that are using the default scheduler, then build them.
def_opt = []
for s in self.steps:
def_opt.extend(s.get_optimizers_with_default_scheduler())
lr_scheduler.get_scheduler_for_name(train_opt['default_lr_scheme'], def_opt, train_opt)
self.print_network() # print network
self.load() # load G and D if needed
# Setting this to false triggers SRGAN to call the models update_model() function on the first iteration.
self.updated = True
def feed_data(self, data):
self.var_L = torch.chunk(corrupted_L, chunks=self.mega_batch_factor, dim=0)
self.var_H = [t.to(self.device) for t in torch.chunk(data['GT'], chunks=self.mega_batch_factor, dim=0)]
input_ref = data['ref'] if 'ref' in data else data['GT']
self.var_ref = [t.to(self.device) for t in torch.chunk(input_ref, chunks=self.mega_batch_factor, dim=0)]
def optimize_parameters(self, step):
# Some models need to make parametric adjustments per-step. Do that here.
for net in self.networks.values():
if hasattr(net, "update_for_step"):
net.update_for_step(step, os.path.join(self.opt['path']['models'], ".."))
# Iterate through the steps, performing them one at a time.
state = {'lr': self.var_L, 'hr': self.var_H, 'ref': self.var_ref}
for s in self.steps:
# Only set requires_grad=True for the network being trained.
nets_to_train = s.get_networks_trained()
for name, net in self.networks.items():
net_enabled = name in nets_to_train
for p in self.netG.parameters():
if p.dtype != torch.int64 and p.dtype != torch.bool:
p.requires_grad = net_enabled
else:
p.requires_grad = False
# Now do a forward and backward pass for each gradient accumulation step.
for m in range(self.mega_batch_factor):
state = s.do_forward_backward(state, m)
# And finally perform optimization.
s.do_step()
# G
for p in self.netD.parameters():
p.requires_grad = False
if self.spsr_enabled:
for p in self.netD_grad.parameters():
p.requires_grad = False
self.swapout_D(step)
self.swapout_G(step)
# Turning off G-grad is required to enable mega-batching and D_update_ratio to work together for some reason.
if step % self.D_update_ratio == 0 and step >= self.D_init_iters:
if self.spsr_enabled and self.branch_pretrain and step < self.branch_init_iters:
for k, v in self.netG.named_parameters():
if v.dtype != torch.int64 and v.dtype != torch.bool:
v.requires_grad = '_branch_pretrain' in k
else:
for p in self.netG.parameters():
if p.dtype != torch.int64 and p.dtype != torch.bool:
p.requires_grad = True
else:
for p in self.netG.parameters():
p.requires_grad = False
# Calculate a standard deviation for the gaussian noise to be applied to the discriminator, termed noise-theta.
if self.D_noise_final == 0:
noise_theta = 0
else:
noise_theta = (self.D_noise_theta - self.D_noise_theta_floor) * (self.D_noise_final - min(step, self.D_noise_final)) / self.D_noise_final + self.D_noise_theta_floor
if _profile:
print("Misc setup %f" % (time() - _t,))
_t = time()
if step >= self.D_init_iters:
self.optimizer_G.zero_grad()
self.fake_GenOut = []
self.fea_GenOut = []
self.fake_H = []
self.spsr_grad_GenOut = []
var_ref_skips = []
for var_L, var_LGAN, var_H, var_ref, pix in zip(self.var_L, self.gan_img, self.var_H, self.var_ref, self.pix):
if self.spsr_enabled:
using_gan_img = False
# SPSR models have outputs from three different branches.
fake_H_branch, fake_GenOut, grad_LR = self.netG(var_L)
fea_GenOut = fake_GenOut
self.spsr_grad_GenOut.append(fake_H_branch)
# Get image gradients for later use.
fake_H_grad = self.get_grad_nopadding(fake_GenOut)
else:
if random.random() > self.gan_lq_img_use_prob:
fea_GenOut, fake_GenOut = self.netG(var_L)
using_gan_img = False
else:
fea_GenOut, fake_GenOut = self.netG(var_LGAN)
using_gan_img = True
if _profile:
print("Gen forward %f" % (time() - _t,))
_t = time()
self.fake_GenOut.append(fake_GenOut.detach())
self.fea_GenOut.append(fea_GenOut.detach())
l_g_total = 0
if step % self.D_update_ratio == 0 and step >= self.D_init_iters:
fea_w = self.l_fea_sched.get_weight_for_step(step)
l_g_pix_log = None
l_g_fea_log = None
l_g_fdpl = None
l_g_fea_log = None
if self.cri_pix and not using_gan_img: # pixel loss
l_g_pix = self.l_pix_w * self.cri_pix(fea_GenOut, pix)
l_g_pix_log = l_g_pix / self.l_pix_w
l_g_total += l_g_pix
if self.spsr_enabled and self.cri_pix_grad: # gradient pixel loss
if self.disjoint_data:
grad_truth = self.get_grad_nopadding(var_L)
grad_pred = F.interpolate(fake_H_grad, size=grad_truth.shape[2:], mode="nearest")
else:
grad_truth = self.get_grad_nopadding(var_H)
grad_pred = fake_H_grad
l_g_pix_grad = self.l_pix_grad_w * self.cri_pix_grad(grad_pred, grad_truth)
l_g_total += l_g_pix_grad
if self.spsr_enabled and self.cri_pix_branch: # branch pixel loss
if self.disjoint_data:
grad_truth = self.get_grad_nopadding(var_L)
grad_pred = F.interpolate(fake_H_branch, size=grad_truth.shape[2:], mode="nearest")
else:
grad_truth = self.get_grad_nopadding(var_H)
grad_pred = fake_H_branch
l_g_pix_grad_branch = self.l_pix_branch_w * self.cri_pix_branch(grad_pred, grad_truth)
l_g_total += l_g_pix_grad_branch
if self.fdpl_enabled and not using_gan_img:
l_g_fdpl = self.cri_fdpl(fea_GenOut, pix)
l_g_total += l_g_fdpl * self.fdpl_weight
if self.cri_fea and not using_gan_img and fea_w > 0: # feature loss
if self.lr_netF is not None:
real_fea = self.lr_netF(var_L, interpolate_factor=self.opt['scale'])
else:
real_fea = self.netF(pix).detach()
fake_fea = self.netF(fea_GenOut)
l_g_fea = fea_w * self.cri_fea(fake_fea, real_fea)
l_g_fea_log = l_g_fea / fea_w
l_g_total += l_g_fea
if _profile:
print("Fea forward %f" % (time() - _t,))
_t = time()
# Note to future self: The BCELoss(0, 1) and BCELoss(0, 0) = .6931
# Effectively this means that the generator has only completely "won" when l_d_real and l_d_fake is
# equal to this value. If I ever come up with an algorithm that tunes fea/gan weights automatically,
# it should target this
l_g_fix_disc = torch.zeros(1, requires_grad=False, device=self.device).squeeze()
for fixed_disc in self.fixed_disc_nets:
weight = fixed_disc.module.fdisc_weight
real_fea = fixed_disc(pix).detach()
fake_fea = fixed_disc(fea_GenOut)
l_g_fix_disc = l_g_fix_disc + weight * self.cri_fea(fake_fea, real_fea)
l_g_total += l_g_fix_disc
if self.l_gan_w > 0:
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
if self.opt['train']['gan_type'] == 'crossgan':
pred_g_fake = self.netD(fake_GenOut, var_L)
else:
pred_g_fake = self.netD(fake_GenOut)
l_g_gan = self.l_gan_w * self.cri_gan(pred_g_fake, True)
elif self.opt['train']['gan_type'] == 'ragan':
pred_d_real = self.netD(var_ref).detach()
pred_g_fake = self.netD(fake_GenOut)
l_g_gan = self.l_gan_w * (
self.cri_gan(pred_d_real - torch.mean(pred_g_fake), False) +
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), True)) / 2
l_g_gan_log = l_g_gan / self.l_gan_w
l_g_total += l_g_gan
if self.spsr_enabled and self.cri_grad_gan:
if self.opt['train']['gan_type'] == 'crossgan':
pred_g_fake_grad = self.netD(fake_H_grad, var_L)
else:
pred_g_fake_grad = self.netD(fake_H_grad)
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch)
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True)
l_g_gan_grad_branch = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad_branch, True)
elif self.opt['train']['gan_type'] == 'ragan':
pred_g_real_grad = self.netD_grad(self.get_grad_nopadding(var_ref)).detach()
l_g_gan_grad = self.l_gan_w * (
self.cri_gan(pred_g_real_grad - torch.mean(pred_g_fake_grad), False) +
self.cri_gan(pred_g_fake_grad - torch.mean(pred_g_real_grad), True)) / 2
l_g_gan_grad_branch = self.l_gan_w * (
self.cri_gan(pred_g_real_grad - torch.mean(pred_g_fake_grad_branch), False) +
self.cri_gan(pred_g_fake_grad_branch - torch.mean(pred_g_real_grad), True)) / 2
l_g_total += l_g_gan_grad + l_g_gan_grad_branch
# Scale the loss down by the batch factor.
l_g_total_log = l_g_total
l_g_total = l_g_total / self.mega_batch_factor
with amp.scale_loss(l_g_total, self.optimizer_G, loss_id=0) as l_g_total_scaled:
l_g_total_scaled.backward()
if _profile:
print("Gen backward %f" % (time() - _t,))
_t = time()
self.optimizer_G.step()
if _profile:
print("Gen step %f" % (time() - _t,))
_t = time()
# D
if self.l_gan_w > 0 and step >= self.G_warmup:
for p in self.netD.parameters():
if p.dtype != torch.int64 and p.dtype != torch.bool:
p.requires_grad = True
noise = torch.randn_like(var_ref) * noise_theta
noise.to(self.device)
real_disc_images = []
fake_disc_images = []
for fake_GenOut, var_LGAN, var_L, var_H, var_ref, pix in zip(self.fake_GenOut, self.gan_img, self.var_L, self.var_H, self.var_ref, self.pix):
if random.random() > self.gan_lq_img_use_prob:
fake_H = fake_GenOut.clone().detach().requires_grad_(False)
else:
# Re-compute generator outputs with the GAN inputs.
with torch.no_grad():
if self.spsr_enabled:
_, fake_H, _ = self.netG(var_LGAN)
else:
_, fake_H = self.netG(var_LGAN)
fake_H = fake_H.detach()
if _profile:
print("Gen forward for disc %f" % (time() - _t,))
_t = time()
# Apply noise to the inputs to slow discriminator convergence.
var_ref = var_ref + noise
fake_H = fake_H + noise
l_d_fea_real = 0
l_d_fea_fake = 0
self.optimizer_D.zero_grad()
if self.opt['train']['gan_type'] == 'pixgan_fea':
# Compute a feature loss which is added to the GAN loss computed later to guide the discriminator better.
disc_fea_scale = .1
_, fea_real = self.netD(var_ref, output_feature_vector=True)
actual_fea = self.netF(var_ref)
l_d_fea_real = self.cri_fea(fea_real, actual_fea) * disc_fea_scale / self.mega_batch_factor
_, fea_fake = self.netD(fake_H, output_feature_vector=True)
actual_fea = self.netF(fake_H)
l_d_fea_fake = self.cri_fea(fea_fake, actual_fea) * disc_fea_scale / self.mega_batch_factor
if self.opt['train']['gan_type'] == 'crossgan':
# need to forward and backward separately, since batch norm statistics differ
# real
pred_d_real = self.netD(var_ref, var_L)
l_d_real = self.cri_gan(pred_d_real, True)
l_d_real_log = l_d_real
# fake
pred_d_fake = self.netD(fake_H, var_L)
l_d_fake = self.cri_gan(pred_d_fake, False)
l_d_fake_log = l_d_fake
# mismatched
mismatched_L = torch.roll(var_L, shifts=1, dims=0)
pred_d_real_mismatched = self.netD(var_ref, mismatched_L)
pred_d_fake_mismatched = self.netD(fake_H, mismatched_L)
l_d_mismatched = (self.cri_gan(pred_d_real_mismatched, False) + self.cri_gan(pred_d_fake_mismatched, False)) / 2
l_d_total = (l_d_real + l_d_fake + l_d_mismatched) / 3
l_d_total = l_d_total / self.mega_batch_factor
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
l_d_total_scaled.backward()
elif self.opt['train']['gan_type'] == 'gan':
# real
pred_d_real = self.netD(var_ref)
l_d_real = self.cri_gan(pred_d_real, True) / self.mega_batch_factor
l_d_real_log = l_d_real * self.mega_batch_factor
# fake
pred_d_fake = self.netD(fake_H)
l_d_fake = self.cri_gan(pred_d_fake, False) / self.mega_batch_factor
l_d_fake_log = l_d_fake * self.mega_batch_factor
l_d_total = (l_d_real + l_d_fake) / 2
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
l_d_total_scaled.backward()
elif 'pixgan' in self.opt['train']['gan_type']:
pixdisc_channels, pixdisc_output_reduction = self.netD.module.pixgan_parameters()
disc_output_shape = (var_ref.shape[0], pixdisc_channels, var_ref.shape[2] // pixdisc_output_reduction, var_ref.shape[3] // pixdisc_output_reduction)
b, _, w, h = var_ref.shape
real = torch.ones((b, pixdisc_channels, w, h), device=var_ref.device)
fake = torch.zeros((b, pixdisc_channels, w, h), device=var_ref.device)
if not self.disjoint_data:
# randomly determine portions of the image to swap to keep the discriminator honest.
SWAP_MAX_DIM = w // 4
SWAP_MIN_DIM = 16
assert SWAP_MAX_DIM > 0
if random.random() > .5: # Make this only happen half the time. Earlier experiments had it happen
# more often and the model was "cheating" by using the presence of
# easily discriminated fake swaps to count the entire generated image
# as fake.
random_swap_count = random.randint(0, 4)
for i in range(random_swap_count):
# Make the swap across fake_H and var_ref
swap_x, swap_y = random.randint(0, w - SWAP_MIN_DIM), random.randint(0, h - SWAP_MIN_DIM)
swap_w, swap_h = random.randint(SWAP_MIN_DIM, SWAP_MAX_DIM), random.randint(SWAP_MIN_DIM, SWAP_MAX_DIM)
if swap_x + swap_w > w:
swap_w = w - swap_x
if swap_y + swap_h > h:
swap_h = h - swap_y
t = fake_H[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)].clone()
fake_H[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)] = var_ref[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)]
var_ref[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)] = t
real[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)] = 0.0
fake[:, :, swap_x:(swap_x+swap_w), swap_y:(swap_y+swap_h)] = 1.0
# Interpolate down to the dimensionality that the discriminator uses.
real = F.interpolate(real, size=disc_output_shape[2:], mode="bilinear", align_corners=False)
fake = F.interpolate(fake, size=disc_output_shape[2:], mode="bilinear", align_corners=False)
# We're also assuming that this is exactly how the flattened discriminator output is generated.
real = real.view(-1, 1)
fake = fake.view(-1, 1)
# real
pred_d_real = self.netD(var_ref)
l_d_real = self.cri_gan(pred_d_real, real) / self.mega_batch_factor
l_d_real_log = l_d_real * self.mega_batch_factor
l_d_real += l_d_fea_real
# fake
pred_d_fake = self.netD(fake_H)
l_d_fake = self.cri_gan(pred_d_fake, fake) / self.mega_batch_factor
l_d_fake_log = l_d_fake * self.mega_batch_factor
l_d_fake += l_d_fea_fake
l_d_total = (l_d_real + l_d_fake) / 2
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
l_d_total_scaled.backward()
pdr = pred_d_real.detach() + torch.abs(torch.min(pred_d_real))
pdr = pdr / torch.max(pdr)
real_disc_images.append(pdr.view(disc_output_shape))
pdf = pred_d_fake.detach() + torch.abs(torch.min(pred_d_fake))
pdf = pdf / torch.max(pdf)
fake_disc_images.append(pdf.view(disc_output_shape))
elif self.opt['train']['gan_type'] == 'ragan':
pred_d_fake = self.netD(fake_H)
pred_d_real = self.netD(var_ref)
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
l_d_real_log = l_d_real
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
l_d_fake_log = l_d_fake
l_d_total = (l_d_real + l_d_fake) / 2
l_d_total /= self.mega_batch_factor
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
l_d_total_scaled.backward()
var_ref_skips.append(var_ref.detach())
self.fake_H.append(fake_H.detach())
self.optimizer_D.step()
if _profile:
print("Disc step %f" % (time() - _t,))
_t = time()
# D_grad.
if self.spsr_enabled and self.cri_grad_gan and step >= self.G_warmup:
for p in self.netD_grad.parameters():
p.requires_grad = True
self.optimizer_D_grad.zero_grad()
for var_ref, fake_H, fake_H_grad_branch in zip(var_ref_skips, self.fake_H, self.spsr_grad_GenOut):
fake_H_grad = self.get_grad_nopadding(fake_H).detach()
var_ref_grad = self.get_grad_nopadding(var_ref)
pred_d_real_grad = self.netD_grad(var_ref_grad)
pred_d_fake_grad = self.netD_grad(fake_H_grad) # Tensor already detached above.
# var_ref and fake_H already has noise added to it. We **must** add noise to fake_H_grad_branch too.
fake_H_grad_branch = fake_H_grad_branch.detach() + noise
pred_d_fake_grad_branch = self.netD_grad(fake_H_grad_branch)
if self.opt['train']['gan_type'] == 'gan':
l_d_real_grad = self.cri_gan(pred_d_real_grad, True)
l_d_fake_grad = (self.cri_gan(pred_d_fake_grad, False) + self.cri_gan(pred_d_fake_grad_branch, False)) / 2
elif self.opt['train']['gan_type'] == 'crossgan':
assert False
elif self.opt['train']['gan_type'] == 'pixgan':
real = torch.ones_like(pred_d_real_grad)
fake = torch.zeros_like(pred_d_fake_grad)
l_d_real_grad = self.cri_grad_gan(pred_d_real_grad, real)
l_d_fake_grad = (self.cri_grad_gan(pred_d_fake_grad, fake) + \
self.cri_grad_gan(pred_d_fake_grad_branch, fake)) / 2
elif self.opt['train']['gan_type'] == 'ragan':
l_d_real_grad = self.cri_grad_gan(pred_d_real_grad - torch.mean(pred_d_fake_grad), True)
l_d_fake_grad = (self.cri_grad_gan(pred_d_fake_grad - torch.mean(pred_d_real_grad), False) + \
self.cri_grad_gan(pred_d_fake_grad_branch - torch.mean(pred_d_real_grad), False)) / 2
l_d_total_grad = (l_d_real_grad + l_d_fake_grad) / 2
l_d_total_grad /= self.mega_batch_factor
with amp.scale_loss(l_d_total_grad, self.optimizer_D_grad, loss_id=2) as l_d_total_grad_scaled:
l_d_total_grad_scaled.backward()
self.optimizer_D_grad.step()
# Log sample images from first microbatch.
if step % self.img_debug_steps == 0:
sample_save_path = os.path.join(self.opt['path']['models'], "..", "temp")
os.makedirs(os.path.join(sample_save_path, "hr"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "lr"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "gen_fea"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "gen"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "disc_fake"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "pix"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "disc"), exist_ok=True)
os.makedirs(os.path.join(sample_save_path, "ref"), exist_ok=True)
if self.spsr_enabled:
os.makedirs(os.path.join(sample_save_path, "gen_grad"), exist_ok=True)
for i in range(self.mega_batch_factor):
utils.save_image(self.var_H[i].cpu(), os.path.join(sample_save_path, "hr", "%05i_%02i.png" % (step, i)))
utils.save_image(self.var_L[i].cpu(), os.path.join(sample_save_path, "lr", "%05i_%02i.png" % (step, i)))
utils.save_image(self.pix[i].cpu(), os.path.join(sample_save_path, "pix", "%05i_%02i.png" % (step, i)))
utils.save_image(self.fake_GenOut[i].cpu(), os.path.join(sample_save_path, "gen", "%05i_%02i.png" % (step, i)))
utils.save_image(self.fea_GenOut[i].cpu(), os.path.join(sample_save_path, "gen_fea", "%05i_%02i.png" % (step, i)))
if self.spsr_enabled:
utils.save_image(self.spsr_grad_GenOut[i].cpu(), os.path.join(sample_save_path, "gen_grad", "%05i_%02i.png" % (step, i)))
if self.l_gan_w > 0 and step >= self.G_warmup and 'pixgan' in self.opt['train']['gan_type']:
utils.save_image(var_ref_skips[i].cpu(), os.path.join(sample_save_path, "ref", "%05i_%02i.png" % (step, i)))
utils.save_image(self.fake_H[i], os.path.join(sample_save_path, "disc_fake", "fake%05i_%02i.png" % (step, i)))
utils.save_image(F.interpolate(fake_disc_images[i], scale_factor=4), os.path.join(sample_save_path, "disc", "fake%05i_%02i.png" % (step, i)))
utils.save_image(F.interpolate(real_disc_images[i], scale_factor=4), os.path.join(sample_save_path, "disc", "real%05i_%02i.png" % (step, i)))
# Log metrics
if step % self.D_update_ratio == 0 and step >= self.D_init_iters:
if self.cri_pix and l_g_pix_log is not None:
self.add_log_entry('l_g_pix', l_g_pix_log.detach().item())
if self.fdpl_enabled and l_g_fdpl is not None:
self.add_log_entry('l_g_fdpl', l_g_fdpl.detach().item())
if self.cri_fea and l_g_fea_log is not None:
self.add_log_entry('feature_weight', fea_w)
self.add_log_entry('l_g_fea', l_g_fea_log.detach().item())
self.add_log_entry('l_g_fix_disc', l_g_fix_disc.detach().item())
if self.l_gan_w > 0:
self.add_log_entry('l_g_gan', l_g_gan_log.detach().item())
self.add_log_entry('l_g_total', l_g_total_log.detach().item())
if self.opt['train']['gan_type'] == 'pixgan_fea':
self.add_log_entry('l_d_fea_fake', l_d_fea_fake.detach().item() * self.mega_batch_factor)
self.add_log_entry('l_d_fea_real', l_d_fea_real.detach().item() * self.mega_batch_factor)
self.add_log_entry('l_d_fake_total', l_d_fake.detach().item() * self.mega_batch_factor)
self.add_log_entry('l_d_real_total', l_d_real.detach().item() * self.mega_batch_factor)
if self.opt['train']['gan_type'] == 'crossgan':
self.add_log_entry('l_d_mismatched', l_d_mismatched.detach().item())
if self.spsr_enabled:
if self.cri_pix_grad:
self.add_log_entry('l_g_pix_grad_branch', l_g_pix_grad.detach().item())
if self.cri_pix_branch:
self.add_log_entry('l_g_pix_grad_branch', l_g_pix_grad_branch.detach().item())
if self.cri_grad_gan:
self.add_log_entry('l_g_gan_grad', l_g_gan_grad.detach().item())
self.add_log_entry('l_g_gan_grad_branch', l_g_gan_grad_branch.detach().item())
if self.l_gan_w > 0 and step >= self.G_warmup:
self.add_log_entry('l_d_real', l_d_real_log.detach().item())
self.add_log_entry('l_d_fake', l_d_fake_log.detach().item())
self.add_log_entry('D_fake', torch.mean(pred_d_fake.detach()))
self.add_log_entry('D_diff', torch.mean(pred_d_fake.detach()) - torch.mean(pred_d_real.detach()))
if self.spsr_enabled:
self.add_log_entry('l_d_real_grad', l_d_real_grad.detach().item())
self.add_log_entry('l_d_fake_grad', l_d_fake_grad.detach().item())
self.add_log_entry('D_fake_grad', torch.mean(pred_d_fake_grad.detach()))
self.add_log_entry('D_diff_grad', torch.mean(pred_d_fake_grad.detach()) - torch.mean(pred_d_real_grad.detach()))
# Log learning rates.
for i, pg in enumerate(self.optimizer_G.param_groups):
self.add_log_entry('gen_lr_%i' % (i,), pg['lr'])
for i, pg in enumerate(self.optimizer_D.param_groups):
self.add_log_entry('disc_lr_%i' % (i,), pg['lr'])
if step % self.corruptor_swapout_steps == 0 and step > 0:
self.load_random_corruptor()
# Allows the log to serve as an easy-to-use rotating buffer.
def add_log_entry(self, key, value):
key_it = "%s_it" % (key,)
log_rotating_buffer_size = 50
if key not in self.log_dict.keys():
self.log_dict[key] = []
self.log_dict[key_it] = 0
if len(self.log_dict[key]) < log_rotating_buffer_size:
self.log_dict[key].append(value)
else:
self.log_dict[key][self.log_dict[key_it] % log_rotating_buffer_size] = value
self.log_dict[key_it] += 1
def compute_fea_loss(self, real, fake):
with torch.no_grad():
real = real.unsqueeze(dim=0).to(self.device)
fake = fake.unsqueeze(dim=0).to(self.device)
real_fea = self.netF(real).detach()
fake_fea = self.netF(fake)
return self.cri_fea(fake_fea, real_fea).item()
def test(self):
self.netG.eval()
with torch.no_grad():
if self.spsr_enabled:
self.fake_H_branch = []
self.fake_GenOut = []
self.grad_LR = []
fake_H_branch, fake_GenOut, grad_LR = self.netG(self.var_L[0])
self.fake_H_branch.append(fake_H_branch)
self.fake_GenOut.append(fake_GenOut)
self.grad_LR.append(grad_LR)
else:
self.fake_GenOut = [self.netG(self.var_L[0])]
self.netG.train()
# Fetches a summary of the log.
def get_current_log(self, step):
return_log = {}
for k in self.log_dict.keys():
if not isinstance(self.log_dict[k], list):
continue
return_log[k] = sum(self.log_dict[k]) / len(self.log_dict[k])
# Some generators can do their own metric logging.
if hasattr(self.netG.module, "get_debug_values"):
return_log.update(self.netG.module.get_debug_values(step))
if hasattr(self.netD.module, "get_debug_values"):
return_log.update(self.netD.module.get_debug_values(step))
return return_log
def get_current_visuals(self, need_GT=True):
out_dict = OrderedDict()
out_dict['LQ'] = self.var_L[0].detach().float().cpu()
gen_batch = self.fake_GenOut[0]
if isinstance(gen_batch, tuple):
gen_batch = gen_batch[0]
out_dict['rlt'] = gen_batch.detach().float().cpu()
if need_GT:
out_dict['GT'] = self.var_H[0].detach().float().cpu()
if self.spsr_enabled:
out_dict['SR_branch'] = self.fake_H_branch[0].float().cpu()
out_dict['LR_grad'] = self.grad_LR[0].float().cpu()
return out_dict
def print_network(self):
for name, net in self.networks.items():
s, n = self.get_network_description(net)
net_struc_str = '{}'.format(net.__class__.__name__)
if self.rank <= 0:
logger.info('Network ' + name + ' structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
logger.info(s)
def load(self):
for name, net in self.networks.items():
load_path = opt['path'][name]
if load_path is not None:
logger.info('Loading model for %s: [%s]' % (name, load_path))
self.load_network(load_path, net)
def save(self, iter_step):
for name, net in self.networks.items():
self.save_network(net, name, iter_step)

View File

@ -5,6 +5,30 @@ import torch
from torch.optim.lr_scheduler import _LRScheduler
def get_scheduler_for_name(name, optimizers, scheduler_opt):
schedulers = []
for o in optimizers:
if name == 'MultiStepLR':
sched = MultiStepLR_Restart(o, scheduler_opt['gen_lr_steps'],
restarts=scheduler_opt['restarts'],
weights=scheduler_opt['restart_weights'],
gamma=scheduler_opt['lr_gamma'],
clear_state=scheduler_opt['clear_state'],
force_lr=scheduler_opt['force_lr'])
elif name == 'ProgressiveMultiStepLR':
sched = ProgressiveMultiStepLR(o, scheduler_opt['gen_lr_steps'],
scheduler_opt['progressive_starts'],
scheduler_opt['lr_gamma'])
elif name == 'CosineAnnealingLR_Restart':
sched = CosineAnnealingLR_Restart(
o, scheduler_opt['T_period'], eta_min=scheduler_opt['eta_min'],
restarts=scheduler_opt['restarts'], weights=scheduler_opt['restart_weights'])
else:
raise NotImplementedError('Scheduler not available')
schedulers.append(sched)
return schedulers
# This scheduler is specifically designed to modulate the learning rate of several different param groups configured
# by a generator or discriminator that slowly adds new stages one at a time, e.g. like progressive growing of GANs.
class ProgressiveMultiStepLR(_LRScheduler):

View File

@ -0,0 +1,29 @@
def create_step(opt_step):
pass
# Defines the expected API for a step
class base_step:
# Returns all optimizers used in this step.
def get_optimizers(self):
pass
# Returns optimizers which are opting in for default LR scheduling.
def get_optimizers_with_default_scheduler(self):
pass
# Returns the names of the networks this step will train. Other networks will be frozen.
def get_networks_trained(self):
pass
# Performs all forward and backward passes for this step given an input state. All input states are lists or
# chunked tensors. Use grad_accum_step to derefernce these steps. Return the state with any variables the step
# exports (which may be used by subsequent steps)
def do_forward_backward(self, state, grad_accum_step):
return state
# Performs the optimizer step after all gradient accumulation is completed.
def do_step(self):
pass