forked from mrq/DL-Art-School
tfd14
hopefully this helps address the positional dependencies of tfd12
This commit is contained in:
parent
4597447178
commit
b157b28c7b
|
@ -492,6 +492,11 @@ class AttentionBlock(nn.Module):
|
|||
|
||||
def _forward(self, x, mask=None):
|
||||
b, c, *spatial = x.shape
|
||||
if len(mask.shape) == 2:
|
||||
mask = mask.unsqueeze(0).repeat(x.shape[0],1,1)
|
||||
if mask.shape[1] != x.shape[-1]:
|
||||
mask = mask[:, :x.shape[-1], :x.shape[-1]]
|
||||
|
||||
x = x.reshape(b, c, -1)
|
||||
x = self.norm(x)
|
||||
if self.do_activation:
|
||||
|
@ -527,11 +532,10 @@ class QKVAttentionLegacy(nn.Module):
|
|||
weight = torch.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
if mask is not None:
|
||||
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
||||
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
||||
weight = weight * mask
|
||||
mask = mask.repeat(self.n_heads, 1, 1)
|
||||
weight[mask.logical_not()] = -torch.inf
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = torch.einsum("bts,bcs->bct", weight, v)
|
||||
|
||||
return a.reshape(bs, -1, length)
|
||||
|
@ -564,9 +568,8 @@ class QKVAttention(nn.Module):
|
|||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
if mask is not None:
|
||||
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
||||
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
||||
weight = weight * mask
|
||||
mask = mask.repeat(self.n_heads, 1, 1)
|
||||
weight[mask.logical_not()] = -torch.inf
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
|
303
codes/models/audio/music/transformer_diffusion14.py
Normal file
303
codes/models/audio/music/transformer_diffusion14.py
Normal file
|
@ -0,0 +1,303 @@
|
|||
import itertools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.arch_util import AttentionBlock, TimestepEmbedSequential
|
||||
from models.audio.music.encoders import ResEncoder16x
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network
|
||||
|
||||
|
||||
def build_local_attention_mask(n, l, fixed_region):
|
||||
"""
|
||||
Builds an attention mask that focuses attention on local region
|
||||
Includes provisions for a "fixed_region" at the start of the sequence where full attention weights will be applied.
|
||||
Args:
|
||||
n: Size of returned matrix (maximum sequence size)
|
||||
l: Size of local context (uni-directional, e.g. the total context is l*2)
|
||||
fixed_region: The number of sequence elements at the start of the sequence that get full attention.
|
||||
Returns:
|
||||
A mask that can be applied to AttentionBlock to achieve local attention.
|
||||
"""
|
||||
assert l*2 < n, f'Local context must be less than global context. {l}, {n}'
|
||||
o = torch.arange(0,n)
|
||||
c = o.unsqueeze(-1).repeat(1,n)
|
||||
r = o.unsqueeze(0).repeat(n,1)
|
||||
localized = ((-(r-c).abs())+l).clamp(0,l-1) / (l-1)
|
||||
localized[:fixed_region] = 1
|
||||
localized[:, :fixed_region] = 1
|
||||
mask = localized > 0
|
||||
return mask
|
||||
|
||||
|
||||
def test_local_attention_mask():
|
||||
print(build_local_attention_mask(9,4,1))
|
||||
|
||||
|
||||
class SubBlock(nn.Module):
|
||||
def __init__(self, inp_dim, contraction_dim, blk_dim, heads, dropout, enable_attention_masking=False):
|
||||
super().__init__()
|
||||
self.enable_attention_masking = enable_attention_masking
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
self.blk_emb_proj = nn.Conv1d(blk_dim, inp_dim, 1)
|
||||
self.attn = AttentionBlock(inp_dim, out_channels=contraction_dim, num_heads=heads)
|
||||
self.attnorm = nn.GroupNorm(8, contraction_dim)
|
||||
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
|
||||
self.ffnorm = nn.GroupNorm(8, contraction_dim)
|
||||
if self.enable_attention_masking:
|
||||
# All regions can attend to the first token, which will be the timestep embedding. Hence, fixed_region.
|
||||
self.mask = build_local_attention_mask(n=2000, l=48, fixed_region=1)
|
||||
else:
|
||||
self.mask = None
|
||||
|
||||
def forward(self, x, blk_emb):
|
||||
if self.mask is not None:
|
||||
self.mask = self.mask.to(x.device)
|
||||
blk_enc = self.blk_emb_proj(blk_emb)
|
||||
ah = self.dropout(self.attn(torch.cat([blk_enc, x], dim=-1), mask=self.mask))
|
||||
ah = ah[:,:,blk_emb.shape[-1]:] # Strip off the blk_emb and re-align with x.
|
||||
ah = F.gelu(self.attnorm(ah))
|
||||
h = torch.cat([ah, x], dim=1)
|
||||
hf = self.dropout(checkpoint(self.ff, h))
|
||||
hf = F.gelu(self.ffnorm(hf))
|
||||
h = torch.cat([h, hf], dim=1)
|
||||
return h
|
||||
|
||||
|
||||
class ConcatAttentionBlock(TimestepBlock):
|
||||
def __init__(self, trunk_dim, contraction_dim, heads, dropout, enable_attention_masking=False):
|
||||
super().__init__()
|
||||
self.prenorm = nn.GroupNorm(8, trunk_dim)
|
||||
self.block1 = SubBlock(trunk_dim, contraction_dim, trunk_dim, heads, dropout,
|
||||
enable_attention_masking=enable_attention_masking)
|
||||
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, trunk_dim, heads, dropout,
|
||||
enable_attention_masking=enable_attention_masking)
|
||||
self.out = nn.Conv1d(contraction_dim*4, trunk_dim, kernel_size=1, bias=False)
|
||||
self.out.weight.data.zero_()
|
||||
|
||||
def forward(self, x, blk_emb):
|
||||
h = self.prenorm(x)
|
||||
h = self.block1(h, blk_emb)
|
||||
h = self.block2(h, blk_emb)
|
||||
h = self.out(h[:,x.shape[1]:])
|
||||
return h + x
|
||||
|
||||
|
||||
class TransformerDiffusion(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
time_embed_dim=256,
|
||||
model_channels=1024,
|
||||
contraction_dim=256,
|
||||
num_layers=8,
|
||||
in_channels=256,
|
||||
input_vec_dim=1024,
|
||||
out_channels=512, # mean and variance
|
||||
num_heads=4,
|
||||
dropout=0,
|
||||
use_corner_alignment=False, # This is an interpolation parameter only provided for backwards compatibility. ALL NEW TRAINS SHOULD SET THIS TO TRUE.
|
||||
use_fp16=False,
|
||||
new_code_expansion=False,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Parameters for re-training head
|
||||
freeze_except_code_converters=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.time_embed_dim = time_embed_dim
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
self.new_code_expansion = new_code_expansion
|
||||
self.use_corner_alignment = use_corner_alignment
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, model_channels),
|
||||
)
|
||||
|
||||
self.input_converter = nn.Conv1d(input_vec_dim, model_channels, 1)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
||||
self.intg = nn.Conv1d(model_channels*2, model_channels, 1)
|
||||
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, num_heads, dropout, enable_attention_masking=True) for _ in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
if freeze_except_code_converters:
|
||||
for p in self.parameters():
|
||||
p.DO_NOT_TRAIN = True
|
||||
p.requires_grad = False
|
||||
for m in [self.code_converter and self.input_converter]:
|
||||
for p in m.parameters():
|
||||
del p.DO_NOT_TRAIN
|
||||
p.requires_grad = True
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
|
||||
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
|
||||
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
|
||||
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
|
||||
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
|
||||
groups = {
|
||||
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
|
||||
'blk1_attention_layers': attn1,
|
||||
'blk2_attention_layers': attn2,
|
||||
'attention_layers': attn1 + attn2,
|
||||
'blk1_ff_layers': ff1,
|
||||
'blk2_ff_layers': ff2,
|
||||
'ff_layers': ff1 + ff2,
|
||||
'block_out_layers': blkout_layers,
|
||||
'out': list(self.out.parameters()),
|
||||
'x_proj': list(self.inp_block.parameters()),
|
||||
'layers': list(self.layers.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def forward(self, x, timesteps, prior=None, conditioning_free=False):
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
|
||||
else:
|
||||
code_emb = self.input_converter(prior)
|
||||
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
|
||||
code_emb)
|
||||
|
||||
code_emb = F.interpolate(code_emb, size=x.shape[-1], mode='nearest')
|
||||
|
||||
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim)).unsqueeze(-1)
|
||||
x = self.inp_block(x)
|
||||
|
||||
x = self.intg(torch.cat([x, code_emb], dim=1))
|
||||
for layer in self.layers:
|
||||
x = checkpoint(layer, x, blk_emb)
|
||||
|
||||
x = x.float()
|
||||
out = self.out(x)
|
||||
|
||||
# Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
unused_params = [self.unconditioned_embedding]
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TransformerDiffusionWithCheaterLatent(nn.Module):
|
||||
def __init__(self, freeze_encoder_until=None, checkpoint_encoder=True, **kwargs):
|
||||
super().__init__()
|
||||
self.internal_step = 0
|
||||
self.freeze_encoder_until = freeze_encoder_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.encoder = ResEncoder16x(256, 1024, 256, checkpointing_enabled=checkpoint_encoder)
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, conditioning_free=False):
|
||||
unused_parameters = []
|
||||
encoder_grad_enabled = self.freeze_encoder_until is not None and self.internal_step > self.freeze_encoder_until
|
||||
if not encoder_grad_enabled:
|
||||
unused_parameters.extend(list(self.encoder.parameters()))
|
||||
with torch.set_grad_enabled(encoder_grad_enabled):
|
||||
proj = self.encoder(truth_mel)
|
||||
|
||||
for p in unused_parameters:
|
||||
proj = proj + p.mean() * 0
|
||||
|
||||
diff = self.diff(x, timesteps, prior=proj, conditioning_free=conditioning_free)
|
||||
return diff
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
self.internal_step = step
|
||||
return {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = self.diff.get_grad_norm_parameter_groups()
|
||||
groups['encoder'] = list(self.encoder.parameters())
|
||||
return groups
|
||||
|
||||
def before_step(self, step):
|
||||
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
|
||||
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
|
||||
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
|
||||
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
|
||||
# directly fiddling with the gradients.
|
||||
for p in scaled_grad_parameters:
|
||||
if hasattr(p, 'grad') and p.grad is not None:
|
||||
p.grad *= .2
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion14(opt_net, opt):
|
||||
return TransformerDiffusion(**opt_net['kwargs'])
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion_14_with_cheater_latent(opt_net, opt):
|
||||
return TransformerDiffusionWithCheaterLatent(**opt_net['kwargs'])
|
||||
|
||||
|
||||
def test_tfd():
|
||||
clip = torch.randn(2,256,400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusion(in_channels=256, model_channels=1024, contraction_dim=512,
|
||||
num_heads=3, input_vec_dim=256, num_layers=12, dropout=.1)
|
||||
model(clip, ts, clip)
|
||||
|
||||
|
||||
def test_cheater_model():
|
||||
clip = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
|
||||
# For music:
|
||||
model = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512,
|
||||
model_channels=1024, contraction_dim=512, num_heads=8,
|
||||
input_vec_dim=256, num_layers=16,
|
||||
dropout=.1, new_code_expansion=True,
|
||||
)
|
||||
#diff_weights = torch.load('extracted_diff.pth')
|
||||
#model.diff.load_state_dict(diff_weights, strict=False)
|
||||
#model.encoder.load_state_dict(torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')), strict=True)
|
||||
#torch.save(model.state_dict(), 'sample.pth')
|
||||
|
||||
print_network(model)
|
||||
o = model(clip, ts, clip)
|
||||
pg = model.get_grad_norm_parameter_groups()
|
||||
|
||||
|
||||
def extract_cheater_encoder(in_f, out_f):
|
||||
p = torch.load(in_f)
|
||||
out = {}
|
||||
for k, v in p.items():
|
||||
if k.startswith('encoder.'):
|
||||
out[k] = v
|
||||
torch.save(out, out_f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#test_local_attention_mask()
|
||||
extract_cheater_encoder('X:\\dlas\\experiments\\train_music_diffusion_tfd_and_cheater\\models\\104500_generator_ema.pth', 'X:\\dlas\\experiments\\tfd12_self_learned_cheater_enc.pth', True)
|
||||
test_cheater_model()
|
||||
#extract_diff('X:\\dlas\experiments\\train_music_diffusion_tfd_cheater_from_scratch\\models\\56500_generator_ema.pth', 'extracted.pth', remove_head=True)
|
|
@ -80,7 +80,7 @@ class GaussianDiffusionInjector(Injector):
|
|||
def forward(self, state):
|
||||
gen = self.env['generators'][self.opt['generator']]
|
||||
hq = state[self.input]
|
||||
assert hq.max() < 1 or hq.min() > -1, f"Attempting to train gaussian diffusion on un-normalized inputs. This won't work, silly! {hq.min()} {hq.max()}"
|
||||
assert hq.max() < 1.000001 or hq.min() > -1.00001, f"Attempting to train gaussian diffusion on un-normalized inputs. This won't work, silly! {hq.min()} {hq.max()}"
|
||||
|
||||
with autocast(enabled=self.env['opt']['fp16']):
|
||||
if not gen.training or (self.deterministic_timesteps_every != 0 and self.env['step'] % self.deterministic_timesteps_every == 0):
|
||||
|
|
Loading…
Reference in New Issue
Block a user