forked from mrq/DL-Art-School
mdf: re-allow p_sample_loop
This commit is contained in:
parent
f28cefdfe2
commit
b432d7c7de
|
@ -215,7 +215,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||
|
||||
def perform_reconstruction_from_cheater_gen(self, audio, sample_rate=22050):
|
||||
assert self.ddim, "DDIM mode expected for reconstructing cheater gen. Do you like to waste resources??"
|
||||
#assert self.ddim, "DDIM mode expected for reconstructing cheater gen. Do you like to waste resources??"
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
|
@ -223,9 +223,10 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
|
||||
|
||||
# 1. Generate the cheater latent using the input as a reference.
|
||||
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True,
|
||||
causal=self.causal, causal_slope=self.causal_slope,
|
||||
model_kwargs={'conditioning_input': cheater})
|
||||
sampler = self.diffuser.ddim_sample_loop if self.ddim else self.diffuser.p_sample_loop
|
||||
gen_cheater = sampler(self.model, cheater.shape, progress=True,
|
||||
causal=self.causal, causal_slope=self.causal_slope,
|
||||
model_kwargs={'conditioning_input': cheater})
|
||||
|
||||
# 2. Decode the cheater into a MEL
|
||||
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||
|
@ -423,14 +424,14 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
if __name__ == '__main__':
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen.yml', 'generator',
|
||||
also_load_savepoint=False,
|
||||
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_causal_retrain\\models\\12000_generator.pth'
|
||||
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_causal_retrain\\models\\18000_generator.pth'
|
||||
).cuda()
|
||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||
'diffusion_steps': 64,
|
||||
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
||||
'diffusion_steps': 256,
|
||||
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': False, 'clip_audio': False,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
||||
'causal': True, 'causal_slope': 4,
|
||||
'causal': True, 'causal_slope': 1,
|
||||
#'partial_low': 128, 'partial_high': 192
|
||||
}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 236, 'device': 'cuda', 'opt': {}}
|
||||
|
|
Loading…
Reference in New Issue
Block a user