forked from mrq/DL-Art-School
mydvae
This commit is contained in:
parent
92e7e57f81
commit
b8f2e0f452
|
@ -12,6 +12,21 @@ from models.tacotron2.taco_utils import load_wav_to_torch
|
|||
from utils.util import opt_get
|
||||
|
||||
|
||||
def load_audio_from_wav(audiopath, sampling_rate):
|
||||
audio, lsr = load_wav_to_torch(audiopath)
|
||||
if lsr != sampling_rate:
|
||||
if lsr < sampling_rate:
|
||||
print(f'{audiopath} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {sampling_rate}. This is not a good idea.')
|
||||
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=sampling_rate/lsr, mode='nearest', recompute_scale_factor=False).squeeze()
|
||||
|
||||
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
||||
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
||||
if torch.any(audio > 2) or not torch.any(audio < 0):
|
||||
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
||||
audio.clip_(-1, 1)
|
||||
return audio.unsqueeze(0)
|
||||
|
||||
|
||||
class WavfileDataset(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, opt):
|
||||
|
@ -43,19 +58,7 @@ class WavfileDataset(torch.utils.data.Dataset):
|
|||
|
||||
def get_audio_for_index(self, index):
|
||||
audiopath = self.audiopaths[index]
|
||||
audio, sampling_rate = load_wav_to_torch(audiopath)
|
||||
if sampling_rate != self.sampling_rate:
|
||||
if sampling_rate < self.sampling_rate:
|
||||
print(f'{audiopath} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.sampling_rate}. This is not a good idea.')
|
||||
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.sampling_rate/sampling_rate, mode='nearest', recompute_scale_factor=False).squeeze()
|
||||
|
||||
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
||||
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
||||
if torch.any(audio > 2) or not torch.any(audio < 0):
|
||||
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
||||
audio.clip_(-1, 1)
|
||||
|
||||
audio = audio.unsqueeze(0)
|
||||
audio = load_audio_from_wav(audiopath, self.sampling_rate)
|
||||
return audio, audiopath
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
|
|
@ -91,12 +91,19 @@ class Upsample(nn.Module):
|
|||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if factor is None:
|
||||
if dims == 1:
|
||||
self.factor = 4
|
||||
else:
|
||||
self.factor = 2
|
||||
else:
|
||||
self.factor = factor
|
||||
if use_conv:
|
||||
ksize = 3
|
||||
pad = 1
|
||||
|
@ -111,10 +118,7 @@ class Upsample(nn.Module):
|
|||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
elif self.dims == 1:
|
||||
x = F.interpolate(x, scale_factor=4, mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
x = F.interpolate(x, scale_factor=self.factor, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
@ -130,7 +134,7 @@ class Downsample(nn.Module):
|
|||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
|
@ -146,6 +150,8 @@ class Downsample(nn.Module):
|
|||
stride = 2
|
||||
else:
|
||||
stride = (1,2,2)
|
||||
if factor is not None:
|
||||
stride = factor
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, ksize, stride=stride, padding=pad
|
||||
|
|
365
codes/models/gpt_voice/my_dvae.py
Normal file
365
codes/models/gpt_voice/my_dvae.py
Normal file
|
@ -0,0 +1,365 @@
|
|||
import functools
|
||||
import math
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.diffusion.nn import conv_nd, normalization, zero_module
|
||||
from models.diffusion.unet_diffusion import Upsample, Downsample, AttentionBlock
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get, checkpoint
|
||||
|
||||
|
||||
def default(val, d):
|
||||
return val if val is not None else d
|
||||
|
||||
|
||||
def eval_decorator(fn):
|
||||
def inner(model, *args, **kwargs):
|
||||
was_training = model.training
|
||||
model.eval()
|
||||
out = fn(model, *args, **kwargs)
|
||||
model.train(was_training)
|
||||
return out
|
||||
return inner
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, kernel_size, padding=padding
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(
|
||||
self._forward, x
|
||||
)
|
||||
|
||||
def _forward(self, x):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DisjointUnet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
attention_resolutions,
|
||||
channel_mult_down,
|
||||
channel_mult_up,
|
||||
in_channels = 3,
|
||||
model_channels = 64,
|
||||
out_channels = 3,
|
||||
dims=2,
|
||||
num_res_blocks = 2,
|
||||
stride = 2,
|
||||
dropout=0,
|
||||
num_heads=4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.enc_input_blocks = nn.ModuleList(
|
||||
[
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
]
|
||||
)
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult_down):
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=-1,
|
||||
)
|
||||
)
|
||||
self.enc_input_blocks.append(nn.Sequential(*layers))
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult_down) - 1:
|
||||
out_ch = ch
|
||||
self.enc_input_blocks.append(
|
||||
Downsample(
|
||||
ch, True, dims=dims, out_channels=out_ch, factor=stride
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
|
||||
self.enc_middle_block = nn.Sequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
dropout,
|
||||
dims=dims,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=-1,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
dropout,
|
||||
dims=dims,
|
||||
),
|
||||
)
|
||||
|
||||
self.enc_output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult_up)):
|
||||
for i in range(num_res_blocks + 1):
|
||||
if len(input_block_chans) > 0:
|
||||
ich = input_block_chans.pop()
|
||||
else:
|
||||
ich = 0
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=-1,
|
||||
)
|
||||
)
|
||||
if level != len(channel_mult_up)-1 and i == num_res_blocks:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
Upsample(ch, True, dims=dims, out_channels=out_ch, factor=stride)
|
||||
)
|
||||
ds //= 2
|
||||
self.enc_output_blocks.append(nn.Sequential(*layers))
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, ch, out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
hs = []
|
||||
h = x
|
||||
for module in self.enc_input_blocks:
|
||||
h = module(h)
|
||||
hs.append(h)
|
||||
h = self.enc_middle_block(h)
|
||||
for module in self.enc_output_blocks:
|
||||
if len(hs) > 0:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
||||
class DiscreteVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
attention_resolutions,
|
||||
in_channels = 3,
|
||||
model_channels = 64,
|
||||
out_channels = 3,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
dims=2,
|
||||
num_tokens = 512,
|
||||
codebook_dim = 512,
|
||||
convergence_layer=2,
|
||||
num_res_blocks = 0,
|
||||
stride = 2,
|
||||
straight_through = False,
|
||||
dropout=0,
|
||||
num_heads=4,
|
||||
record_codes=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.num_tokens = num_tokens
|
||||
self.num_layers = len(channel_mult)
|
||||
self.straight_through = straight_through
|
||||
self.codebook = Quantize(codebook_dim, num_tokens)
|
||||
self.positional_dims = dims
|
||||
self.dropout = dropout
|
||||
self.num_heads = num_heads
|
||||
self.record_codes = record_codes
|
||||
if record_codes:
|
||||
self.codes = torch.zeros((32768,), dtype=torch.long)
|
||||
self.code_ind = 0
|
||||
self.internal_step = 0
|
||||
|
||||
enc_down = channel_mult
|
||||
enc_up = list(reversed(channel_mult[convergence_layer:]))
|
||||
self.encoder = DisjointUnet(attention_resolutions, enc_down, enc_up, in_channels=in_channels, model_channels=model_channels,
|
||||
out_channels=codebook_dim, dims=dims, num_res_blocks=num_res_blocks, num_heads=num_heads, dropout=dropout,
|
||||
stride=stride)
|
||||
dec_down = list(reversed(enc_up))
|
||||
dec_up = list(reversed(enc_down))
|
||||
self.decoder = DisjointUnet(attention_resolutions, dec_down, dec_up, in_channels=codebook_dim, model_channels=model_channels,
|
||||
out_channels=out_channels, dims=dims, num_res_blocks=num_res_blocks, num_heads=num_heads, dropout=dropout,
|
||||
stride=stride)
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.record_codes:
|
||||
# Report annealing schedule
|
||||
return {'histogram_codes': self.codes}
|
||||
else:
|
||||
return {}
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def get_codebook_indices(self, images):
|
||||
img = images
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return codes
|
||||
|
||||
def decode(
|
||||
self,
|
||||
img_seq
|
||||
):
|
||||
image_embeds = self.codebook.embed_code(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
kwargs = {}
|
||||
if self.positional_dims == 1:
|
||||
arrange = 'b n d -> b d n'
|
||||
else:
|
||||
h = w = int(sqrt(n))
|
||||
arrange = 'b (h w) d -> b d h w'
|
||||
kwargs = {'h': h, 'w': w}
|
||||
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
||||
images = self.decoder(image_embeds)
|
||||
return images
|
||||
|
||||
def infer(self, img):
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return self.decode(codes)
|
||||
|
||||
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
||||
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
||||
# more lossy (but useful for determining network performance).
|
||||
def forward(
|
||||
self,
|
||||
img
|
||||
):
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
||||
|
||||
if self.training:
|
||||
out = sampled
|
||||
out = self.decoder(out)
|
||||
else:
|
||||
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
||||
out = self.decode(codes)
|
||||
|
||||
# reconstruction loss
|
||||
recon_loss = F.mse_loss(img, out, reduction='none')
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
self.code_ind = self.code_ind + l
|
||||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
self.internal_step += 1
|
||||
|
||||
return recon_loss, commitment_loss, out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_my_dvae(opt_net, opt):
|
||||
return DiscreteVAE(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = DiscreteVAE((8, 16), channel_mult=(1,2,4,8,8), in_channels=80, model_channels=128, out_channels=80, dims=1, num_res_blocks=2)
|
||||
inp = torch.randn((2,80,512))
|
||||
print([j.shape for j in net(inp)])
|
|
@ -25,6 +25,8 @@ if __name__ == '__main__':
|
|||
separator = Separator('spleeter:2stems')
|
||||
files = find_audio_files(src_dir, include_nonwav=True)
|
||||
for e, file in enumerate(tqdm(files)):
|
||||
if e < 406500:
|
||||
continue
|
||||
file_basis = osp.relpath(file, src_dir)\
|
||||
.replace('/', '_')\
|
||||
.replace('\\', '_')\
|
||||
|
@ -54,6 +56,8 @@ if __name__ == '__main__':
|
|||
elif ratio <= 1:
|
||||
od = output_dir_bg
|
||||
os = bg
|
||||
else:
|
||||
continue
|
||||
|
||||
# Strip out channels.
|
||||
if len(os.shape) > 1:
|
||||
|
|
|
@ -72,8 +72,6 @@ if __name__ == "__main__":
|
|||
if audio_mode:
|
||||
im = load_audio_from_wav(opt['image'], opt['sample_rate'])
|
||||
im = im[:, :(im.shape[1]//4096)*4096]
|
||||
# Hack to reduce memory usage (but cuts off sample):
|
||||
im = im[:, :40960]
|
||||
else:
|
||||
im = ToTensor()(Image.open(opt['image'])) * 2 - 1
|
||||
_, h, w = im.shape
|
||||
|
|
|
@ -284,7 +284,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_from_dvae_clips.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_mydvae_audio_clips.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -502,6 +502,22 @@ class NormalizeInjector(Injector):
|
|||
return {self.output: out}
|
||||
|
||||
|
||||
# Performs frequency-bin normalization for spectrograms.
|
||||
class FrequencyBinNormalizeInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
self.shift, self.scale = torch.load(opt['stats_file'])
|
||||
self.shift = self.shift.view(1,-1,1)
|
||||
self.scale = self.scale.view(1,-1,1)
|
||||
|
||||
def forward(self, state):
|
||||
inp = state[self.input]
|
||||
self.shift = self.shift.to(inp.device)
|
||||
self.scale = self.scale.to(inp.device)
|
||||
out = (inp - self.shift) / self.scale
|
||||
return {self.output: out}
|
||||
|
||||
|
||||
# Performs normalization across fixed constants.
|
||||
class DenormalizeInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
|
|
Loading…
Reference in New Issue
Block a user