forked from mrq/DL-Art-School
Retool HighToLowResNet
The receptive field of the original was *really* low. This new one has a receptive field of 36x36px patches. It also has some gradient issues that need to be worked out
This commit is contained in:
parent
02ff4a57fd
commit
b8f67418d4
|
@ -6,71 +6,81 @@ import torch
|
||||||
|
|
||||||
|
|
||||||
class HighToLowResNet(nn.Module):
|
class HighToLowResNet(nn.Module):
|
||||||
''' ResNet that applies a noise channel to the input, then downsamples it. Currently only downscale=4 is supported. '''
|
''' ResNet that applies a noise channel to the input, then downsamples it four times using strides. Finally, the
|
||||||
|
input is upsampled to the desired downscale. Currently downscale=1,2,4 is supported.
|
||||||
|
'''
|
||||||
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
|
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
|
||||||
super(HighToLowResNet, self).__init__()
|
super(HighToLowResNet, self).__init__()
|
||||||
|
|
||||||
|
assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, )
|
||||||
self.downscale = downscale
|
self.downscale = downscale
|
||||||
|
|
||||||
# We will always apply a noise channel to the inputs, account for that here.
|
# We will always apply a noise channel to the inputs, account for that here.
|
||||||
in_nc += 1
|
in_nc += 1
|
||||||
|
|
||||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||||
basic_block = functools.partial(arch_util.ResidualBlock_noBN, nf=nf)
|
|
||||||
basic_block2 = functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2)
|
|
||||||
# To keep the total model size down, the residual trunks will be applied across 3 downsampling stages.
|
|
||||||
# The first will be applied against the hi-res inputs and will have only 4 layers.
|
|
||||||
# The second will be applied after half of the downscaling and will also have only 6 layers.
|
|
||||||
# The final will be applied against the final resolution and will have all of the remaining layers.
|
|
||||||
self.trunk_hires = arch_util.make_layer(basic_block, 5)
|
|
||||||
self.trunk_medres = arch_util.make_layer(basic_block, 10)
|
|
||||||
self.trunk_lores = arch_util.make_layer(basic_block2, nb - 15)
|
|
||||||
|
|
||||||
# downsampling
|
# All sub-modules must be explicit members. Make it so. Then add them to a list.
|
||||||
if self.downscale == 4 or self.downscale == 1:
|
self.trunk1 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf), 4)
|
||||||
self.downconv1 = nn.Conv2d(nf, nf, 3, stride=2, padding=1, bias=True)
|
self.trunk2 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*4), 8)
|
||||||
self.downconv2 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True)
|
self.trunk3 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*8), 16)
|
||||||
else:
|
self.trunk4 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*16), 32)
|
||||||
raise EnvironmentError("Requested downscale not supported: %i" % (downscale,))
|
self.trunks = [self.trunk1, self.trunk2, self.trunk3, self.trunk4]
|
||||||
|
self.trunkshapes = [4, 8, 16, 32]
|
||||||
|
|
||||||
self.HRconv = nn.Conv2d(nf*2, nf*2, 3, stride=1, padding=1, bias=True)
|
self.r1 = nn.Conv2d(nf, nf*4, 3, stride=2, padding=1, bias=True)
|
||||||
if self.downscale == 4:
|
self.r2 = nn.Conv2d(nf*4, nf*8, 3, stride=2, padding=1, bias=True)
|
||||||
self.conv_last = nn.Conv2d(nf*2, out_nc, 3, stride=1, padding=1, bias=True)
|
self.r3 = nn.Conv2d(nf*8, nf*16, 3, stride=2, padding=1, bias=True)
|
||||||
else:
|
self.reducers = [self.r1, self.r2, self.r3]
|
||||||
self.pixel_shuffle = nn.PixelShuffle(4)
|
|
||||||
self.conv_last = nn.Conv2d(int(nf/8), out_nc, 3, stride=1, padding=1, bias=True)
|
self.pixel_shuffle = nn.PixelShuffle(2)
|
||||||
|
|
||||||
|
self.a1 = nn.Conv2d(nf*4, nf*8, 3, stride=1, padding=1, bias=True)
|
||||||
|
self.a2 = nn.Conv2d(nf*2, nf*4, 3, stride=1, padding=1, bias=True)
|
||||||
|
self.a3 = nn.Conv2d(nf, nf, 3, stride=1, padding=1, bias=True)
|
||||||
|
self.assemblers = [self.a1, self.a2, self.a3]
|
||||||
|
|
||||||
|
if self.downscale == 1:
|
||||||
|
nf_last = nf
|
||||||
|
elif self.downscale == 2:
|
||||||
|
nf_last = nf * 4
|
||||||
|
elif self.downscale == 4:
|
||||||
|
nf_last = nf * 8
|
||||||
|
|
||||||
|
self.conv_last = nn.Conv2d(nf_last, out_nc, 3, stride=1, padding=1, bias=True)
|
||||||
|
|
||||||
# activation function
|
# activation function
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||||
|
|
||||||
# initialization
|
# initialization
|
||||||
arch_util.initialize_weights([self.conv_first, self.HRconv, self.conv_last, self.downconv1, self.downconv2],
|
arch_util.initialize_weights([self.conv_first, self.conv_last] + self.reducers + self.assemblers,
|
||||||
0.1)
|
.1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
# Noise has the same shape as the input with only one channel.
|
# Noise has the same shape as the input with only one channel.
|
||||||
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device)
|
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
||||||
out = torch.cat([x, rand_feature], dim=1)
|
out = torch.cat([x, rand_feature], dim=1)
|
||||||
|
|
||||||
out = self.lrelu(self.conv_first(out))
|
out = self.lrelu(self.conv_first(out))
|
||||||
out = self.trunk_hires(out)
|
skips = []
|
||||||
|
for i in range(4):
|
||||||
|
skips.append(out)
|
||||||
|
out = self.trunks[i](out)
|
||||||
|
if i < 3:
|
||||||
|
out = self.lrelu(self.reducers[i](out))
|
||||||
|
|
||||||
if self.downscale == 4 or self.downscale == 1:
|
target_width = x.shape[-1] / self.downscale
|
||||||
out = self.lrelu(self.downconv1(out))
|
i = 0
|
||||||
out = self.trunk_medres(out)
|
while out.shape[-1] != target_width:
|
||||||
out = self.lrelu(self.downconv2(out))
|
out = self.pixel_shuffle(out)
|
||||||
out = self.trunk_lores(out)
|
out = self.lrelu(self.assemblers[i](out))
|
||||||
|
out = out + skips[-i-2]
|
||||||
if self.downscale == 1:
|
i += 1
|
||||||
out = self.lrelu(self.pixel_shuffle(self.HRconv(out)))
|
|
||||||
out = self.conv_last(out)
|
|
||||||
else:
|
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(out)))
|
|
||||||
|
|
||||||
|
# TODO: Figure out where this magic number '12' comes from and fix it.
|
||||||
|
out = 12 * self.conv_last(out)
|
||||||
if self.downscale == 1:
|
if self.downscale == 1:
|
||||||
base = x
|
base = x
|
||||||
else:
|
else:
|
||||||
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
|
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
|
||||||
|
return out + base
|
||||||
out += base
|
|
||||||
return out
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user