Retool HighToLowResNet

The receptive field of the original was *really* low. This new one has a
receptive field of 36x36px patches. It also has some gradient issues
that need to be worked out
This commit is contained in:
James Betker 2020-04-26 01:13:42 -06:00
parent 02ff4a57fd
commit b8f67418d4

View File

@ -6,71 +6,81 @@ import torch
class HighToLowResNet(nn.Module): class HighToLowResNet(nn.Module):
''' ResNet that applies a noise channel to the input, then downsamples it. Currently only downscale=4 is supported. ''' ''' ResNet that applies a noise channel to the input, then downsamples it four times using strides. Finally, the
input is upsampled to the desired downscale. Currently downscale=1,2,4 is supported.
'''
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4): def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
super(HighToLowResNet, self).__init__() super(HighToLowResNet, self).__init__()
assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, )
self.downscale = downscale self.downscale = downscale
# We will always apply a noise channel to the inputs, account for that here. # We will always apply a noise channel to the inputs, account for that here.
in_nc += 1 in_nc += 1
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
basic_block = functools.partial(arch_util.ResidualBlock_noBN, nf=nf)
basic_block2 = functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2)
# To keep the total model size down, the residual trunks will be applied across 3 downsampling stages.
# The first will be applied against the hi-res inputs and will have only 4 layers.
# The second will be applied after half of the downscaling and will also have only 6 layers.
# The final will be applied against the final resolution and will have all of the remaining layers.
self.trunk_hires = arch_util.make_layer(basic_block, 5)
self.trunk_medres = arch_util.make_layer(basic_block, 10)
self.trunk_lores = arch_util.make_layer(basic_block2, nb - 15)
# downsampling # All sub-modules must be explicit members. Make it so. Then add them to a list.
if self.downscale == 4 or self.downscale == 1: self.trunk1 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf), 4)
self.downconv1 = nn.Conv2d(nf, nf, 3, stride=2, padding=1, bias=True) self.trunk2 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*4), 8)
self.downconv2 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True) self.trunk3 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*8), 16)
else: self.trunk4 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*16), 32)
raise EnvironmentError("Requested downscale not supported: %i" % (downscale,)) self.trunks = [self.trunk1, self.trunk2, self.trunk3, self.trunk4]
self.trunkshapes = [4, 8, 16, 32]
self.HRconv = nn.Conv2d(nf*2, nf*2, 3, stride=1, padding=1, bias=True) self.r1 = nn.Conv2d(nf, nf*4, 3, stride=2, padding=1, bias=True)
if self.downscale == 4: self.r2 = nn.Conv2d(nf*4, nf*8, 3, stride=2, padding=1, bias=True)
self.conv_last = nn.Conv2d(nf*2, out_nc, 3, stride=1, padding=1, bias=True) self.r3 = nn.Conv2d(nf*8, nf*16, 3, stride=2, padding=1, bias=True)
else: self.reducers = [self.r1, self.r2, self.r3]
self.pixel_shuffle = nn.PixelShuffle(4)
self.conv_last = nn.Conv2d(int(nf/8), out_nc, 3, stride=1, padding=1, bias=True) self.pixel_shuffle = nn.PixelShuffle(2)
self.a1 = nn.Conv2d(nf*4, nf*8, 3, stride=1, padding=1, bias=True)
self.a2 = nn.Conv2d(nf*2, nf*4, 3, stride=1, padding=1, bias=True)
self.a3 = nn.Conv2d(nf, nf, 3, stride=1, padding=1, bias=True)
self.assemblers = [self.a1, self.a2, self.a3]
if self.downscale == 1:
nf_last = nf
elif self.downscale == 2:
nf_last = nf * 4
elif self.downscale == 4:
nf_last = nf * 8
self.conv_last = nn.Conv2d(nf_last, out_nc, 3, stride=1, padding=1, bias=True)
# activation function # activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
# initialization # initialization
arch_util.initialize_weights([self.conv_first, self.HRconv, self.conv_last, self.downconv1, self.downconv2], arch_util.initialize_weights([self.conv_first, self.conv_last] + self.reducers + self.assemblers,
0.1) .1)
def forward(self, x): def forward(self, x):
# Noise has the same shape as the input with only one channel. # Noise has the same shape as the input with only one channel.
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device) rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
out = torch.cat([x, rand_feature], dim=1) out = torch.cat([x, rand_feature], dim=1)
out = self.lrelu(self.conv_first(out)) out = self.lrelu(self.conv_first(out))
out = self.trunk_hires(out) skips = []
for i in range(4):
skips.append(out)
out = self.trunks[i](out)
if i < 3:
out = self.lrelu(self.reducers[i](out))
if self.downscale == 4 or self.downscale == 1: target_width = x.shape[-1] / self.downscale
out = self.lrelu(self.downconv1(out)) i = 0
out = self.trunk_medres(out) while out.shape[-1] != target_width:
out = self.lrelu(self.downconv2(out)) out = self.pixel_shuffle(out)
out = self.trunk_lores(out) out = self.lrelu(self.assemblers[i](out))
out = out + skips[-i-2]
if self.downscale == 1: i += 1
out = self.lrelu(self.pixel_shuffle(self.HRconv(out)))
out = self.conv_last(out)
else:
out = self.conv_last(self.lrelu(self.HRconv(out)))
# TODO: Figure out where this magic number '12' comes from and fix it.
out = 12 * self.conv_last(out)
if self.downscale == 1: if self.downscale == 1:
base = x base = x
else: else:
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False) base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
return out + base
out += base
return out