diff --git a/codes/models/audio/tts/unet_diffusion_tts_flat0.py b/codes/models/audio/tts/unet_diffusion_tts_flat0.py index 197ba330..76078164 100644 --- a/codes/models/audio/tts/unet_diffusion_tts_flat0.py +++ b/codes/models/audio/tts/unet_diffusion_tts_flat0.py @@ -153,14 +153,15 @@ class DiffusionTtsFlat(nn.Module): AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), ) + self.code_norm = normalization(model_channels) self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1) self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2), - AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), - AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), - AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), - AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), - AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)) - self.conditioning_conv = nn.Conv1d(model_channels*2, model_channels, 1) + nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True)) self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1)) self.conditioning_timestep_integrator = TimestepEmbedSequential( DiffusionLayer(model_channels, dropout, num_heads), @@ -207,9 +208,13 @@ class DiffusionTtsFlat(nn.Module): code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1) else: unused_params.append(self.unconditioned_embedding) - cond_emb = self.contextual_embedder(conditioning_input) - if len(cond_emb.shape) == 3: # Just take the first element. - cond_emb = cond_emb[:, :, 0] + speech_conditioning_input = conditioning_input.unsqueeze(1) if len(conditioning_input.shape) == 3 else conditioning_input + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) + conds = torch.cat(conds, dim=-1) + cond_emb = conds.mean(dim=-1) + cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1) if is_latent(aligned_conditioning): code_emb = self.latent_converter(aligned_conditioning) unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) @@ -217,8 +222,7 @@ class DiffusionTtsFlat(nn.Module): code_emb = self.code_embedding(aligned_conditioning).permute(0,2,1) code_emb = self.code_converter(code_emb) unused_params.extend(list(self.latent_converter.parameters())) - cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1]) - code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1)) + code_emb = self.code_norm(code_emb) * (1 + cond_scale.unsqueeze(-1)) + cond_shift.unsqueeze(-1) # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. if self.training and self.unconditioned_percentage > 0: unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),