forked from mrq/DL-Art-School
GPT_ASR
This commit is contained in:
parent
81e91c99de
commit
cdee31c60b
107
codes/models/gpt_voice/gpt_asr.py
Normal file
107
codes/models/gpt_voice/gpt_asr.py
Normal file
|
@ -0,0 +1,107 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from munch import munchify
|
||||||
|
|
||||||
|
from models.gpt_voice.lucidrains_gpt import Transformer
|
||||||
|
from models.tacotron2.taco_utils import get_mask_from_lengths
|
||||||
|
from models.tacotron2.text import symbols
|
||||||
|
from trainer.networks import register_model
|
||||||
|
from utils.util import opt_get
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock(nn.Module):
|
||||||
|
def __init__(self, chan):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
|
||||||
|
nn.BatchNorm1d(chan),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
|
||||||
|
nn.BatchNorm1d(chan)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return F.relu(self.net(x) + x)
|
||||||
|
|
||||||
|
|
||||||
|
class MelEncoder(nn.Module):
|
||||||
|
def __init__(self, channels, mel_channels=80):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3),
|
||||||
|
ResBlock(channels//4),
|
||||||
|
ResBlock(channels//4),
|
||||||
|
nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2),
|
||||||
|
nn.BatchNorm1d(channels//2),
|
||||||
|
nn.ReLU(),
|
||||||
|
ResBlock(channels//2),
|
||||||
|
ResBlock(channels//2),
|
||||||
|
ResBlock(channels//2),
|
||||||
|
nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2),
|
||||||
|
ResBlock(channels),
|
||||||
|
ResBlock(channels),
|
||||||
|
ResBlock(channels)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.encoder(x)
|
||||||
|
|
||||||
|
|
||||||
|
class GptAsr(nn.Module):
|
||||||
|
MAX_SYMBOLS_PER_PHRASE = 200
|
||||||
|
MAX_MEL_FRAMES = 1000 // 4
|
||||||
|
NUMBER_SYMBOLS = len(symbols)
|
||||||
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS
|
||||||
|
|
||||||
|
def __init__(self, layers=8, model_dim=512, heads=8):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.model_dim = model_dim
|
||||||
|
self.max_mel_frames = self.MAX_MEL_FRAMES
|
||||||
|
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
|
||||||
|
self.mel_encoder = MelEncoder(model_dim)
|
||||||
|
self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim)
|
||||||
|
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
|
||||||
|
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads,
|
||||||
|
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
|
||||||
|
|
||||||
|
self.final_norm = nn.LayerNorm(model_dim)
|
||||||
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
||||||
|
|
||||||
|
def forward(self, mel_inputs, text_targets):
|
||||||
|
text_targets = F.pad(text_targets, (0, self.MAX_SYMBOLS_PER_PHRASE-text_targets.shape[1]))
|
||||||
|
text_emb = self.text_embedding(text_targets)
|
||||||
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
|
||||||
|
mel_emb = self.mel_encoder(mel_inputs)
|
||||||
|
mel_emb = F.pad(mel_emb, (0, self.MAX_MEL_FRAMES-mel_emb.shape[-1]))
|
||||||
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
||||||
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
||||||
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||||||
|
|
||||||
|
enc = self.gpt(emb)
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
text_logits = self.final_norm(enc[:, self.MAX_MEL_FRAMES:])
|
||||||
|
text_logits = self.text_head(text_logits)
|
||||||
|
text_logits = text_logits.permute(0,2,1)
|
||||||
|
loss_text = F.cross_entropy(text_logits[:,:,1:], text_targets[:,:-1].long())
|
||||||
|
|
||||||
|
return loss_text.mean()
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def register_gpt_asr(opt_net, opt):
|
||||||
|
return GptAsr(**opt_get(opt_net, ['kwargs'], {}))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
gpt = GptAsr()
|
||||||
|
l = gpt(torch.randn(2,80,800),
|
||||||
|
torch.randint(high=len(symbols), size=(2,180)))
|
||||||
|
print(l.shape)
|
||||||
|
|
||||||
|
#o = gpt.infer(torch.randint(high=24, size=(2,60)))
|
||||||
|
#print(o.shape)
|
||||||
|
|
||||||
|
|
|
@ -108,7 +108,7 @@ def stable_softmax(t, dim = -1, alpha = 32 ** 2):
|
||||||
|
|
||||||
# classes
|
# classes
|
||||||
class Attention(nn.Module):
|
class Attention(nn.Module):
|
||||||
def __init__(self, dim, seq_len, causal = True, heads = 8, dim_head = 64, dropout = 0., stable = False):
|
def __init__(self, dim, seq_len, non_causal_sequence_partition = 0, heads = 8, dim_head = 64, dropout = 0., stable = False):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
|
@ -116,7 +116,7 @@ class Attention(nn.Module):
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
|
|
||||||
self.stable = stable
|
self.stable = stable
|
||||||
self.causal = causal
|
self.non_causal_sequence_partition = non_causal_sequence_partition
|
||||||
|
|
||||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||||
self.to_out = nn.Sequential(
|
self.to_out = nn.Sequential(
|
||||||
|
@ -141,10 +141,14 @@ class Attention(nn.Module):
|
||||||
dots.masked_fill_(~mask, mask_value)
|
dots.masked_fill_(~mask, mask_value)
|
||||||
del mask
|
del mask
|
||||||
|
|
||||||
if self.causal:
|
|
||||||
i, j = dots.shape[-2:]
|
i, j = dots.shape[-2:]
|
||||||
mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool()
|
mask = torch.ones(i, j, device = device).triu_(j - i + 1)
|
||||||
dots.masked_fill_(mask, mask_value)
|
if self.non_causal_sequence_partition > 0:
|
||||||
|
non_causal_mask = torch.ones((i, j), device=device)
|
||||||
|
non_causal_mask[:, :self.non_causal_sequence_partition] = 0
|
||||||
|
mask = mask * non_causal_mask
|
||||||
|
|
||||||
|
dots.masked_fill_(mask.bool(), mask_value)
|
||||||
|
|
||||||
attn = softmax(dots, dim=-1)
|
attn = softmax(dots, dim=-1)
|
||||||
|
|
||||||
|
@ -162,21 +166,21 @@ class Transformer(nn.Module):
|
||||||
depth,
|
depth,
|
||||||
seq_len,
|
seq_len,
|
||||||
reversible = False,
|
reversible = False,
|
||||||
causal = True,
|
|
||||||
heads = 8,
|
heads = 8,
|
||||||
dim_head = 64,
|
dim_head = 64,
|
||||||
ff_mult = 4,
|
ff_mult = 4,
|
||||||
attn_dropout = 0.,
|
attn_dropout = 0.,
|
||||||
ff_dropout = 0.,
|
ff_dropout = 0.,
|
||||||
sparse_attn = False,
|
sparse_attn = False,
|
||||||
stable = False
|
stable = False,
|
||||||
|
non_causal_sequence_partition=0,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
layers = nn.ModuleList([])
|
layers = nn.ModuleList([])
|
||||||
sparse_layer = cast_tuple(sparse_attn, depth)
|
sparse_layer = cast_tuple(sparse_attn, depth)
|
||||||
|
|
||||||
for ind, sparse_attn in zip(range(depth), sparse_layer):
|
for ind, sparse_attn in zip(range(depth), sparse_layer):
|
||||||
attn = Attention(dim, stable=stable, causal = causal, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)
|
attn = Attention(dim, stable=stable, non_causal_sequence_partition = non_causal_sequence_partition, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)
|
||||||
|
|
||||||
layers.append(nn.ModuleList([
|
layers.append(nn.ModuleList([
|
||||||
LayerScale(dim, ind + 1, PreNorm(dim, attn)),
|
LayerScale(dim, ind + 1, PreNorm(dim, attn)),
|
||||||
|
|
|
@ -282,7 +282,7 @@ class Trainer:
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_lrdvae_audio_mozcv.yml')
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mozcv.yml')
|
||||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||||
parser.add_argument('--local_rank', type=int, default=0)
|
parser.add_argument('--local_rank', type=int, default=0)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
|
@ -60,7 +60,7 @@ class GeneratorInjector(Injector):
|
||||||
results = method(*params)
|
results = method(*params)
|
||||||
new_state = {}
|
new_state = {}
|
||||||
if isinstance(self.output, list):
|
if isinstance(self.output, list):
|
||||||
# Only dereference tuples or lists, not tensors.
|
# Only dereference tuples or lists, not tensors. IF YOU REACH THIS ERROR, REMOVE THE BRACES AROUND YOUR OUTPUTS IN THE YAML CONFIG
|
||||||
assert isinstance(results, list) or isinstance(results, tuple)
|
assert isinstance(results, list) or isinstance(results, tuple)
|
||||||
for i, k in enumerate(self.output):
|
for i, k in enumerate(self.output):
|
||||||
new_state[k] = results[i]
|
new_state[k] = results[i]
|
||||||
|
|
Loading…
Reference in New Issue
Block a user