forked from mrq/DL-Art-School
Fix some bugs, checkin work on vqvae3
This commit is contained in:
parent
f89ea5f1c6
commit
cf9a6da889
|
@ -2,9 +2,8 @@ import math
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import switched_conv_cuda_naive
|
|
||||||
from lambda_networks import LambdaLayer
|
from lambda_networks import LambdaLayer
|
||||||
from torch.nn import init, Conv2d, MSELoss
|
from torch.nn import init, Conv2d, MSELoss, ZeroPad2d
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
@ -24,10 +23,14 @@ def SwitchedConvRoutingNormal(input, selector, weight, bias, stride=1):
|
||||||
class SwitchedConvHardRoutingFunction(torch.autograd.Function):
|
class SwitchedConvHardRoutingFunction(torch.autograd.Function):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(ctx, input, selector, weight, bias, stride=1):
|
def forward(ctx, input, selector, weight, bias, stride=1):
|
||||||
|
# Pre-pad the input.
|
||||||
|
input = ZeroPad2d(weight.shape[-1]//2)(input)
|
||||||
|
|
||||||
# Build hard attention mask from selector input
|
# Build hard attention mask from selector input
|
||||||
b, s, h, w = selector.shape
|
b, s, h, w = selector.shape
|
||||||
|
|
||||||
mask = selector.argmax(dim=1).int()
|
mask = selector.argmax(dim=1).int()
|
||||||
|
import switched_conv_cuda_naive
|
||||||
output = switched_conv_cuda_naive.forward(input, mask, weight, bias, stride)
|
output = switched_conv_cuda_naive.forward(input, mask, weight, bias, stride)
|
||||||
|
|
||||||
ctx.stride = stride
|
ctx.stride = stride
|
||||||
|
@ -47,7 +50,13 @@ class SwitchedConvHardRoutingFunction(torch.autograd.Function):
|
||||||
# and zeros that is multiplied by the output.)
|
# and zeros that is multiplied by the output.)
|
||||||
grad_sel = (gradIn * output).sum(dim=1, keepdim=True).repeat(1,ctx.breadth,1,1)
|
grad_sel = (gradIn * output).sum(dim=1, keepdim=True).repeat(1,ctx.breadth,1,1)
|
||||||
|
|
||||||
|
import switched_conv_cuda_naive
|
||||||
grad, grad_w, grad_b = switched_conv_cuda_naive.backward(input, gradIn.contiguous(), mask, weight, bias, ctx.stride)
|
grad, grad_w, grad_b = switched_conv_cuda_naive.backward(input, gradIn.contiguous(), mask, weight, bias, ctx.stride)
|
||||||
|
|
||||||
|
# Remove input padding from grad
|
||||||
|
padding = weight.shape[-1] // 2
|
||||||
|
if padding > 0:
|
||||||
|
grad = grad[:,:,padding:-padding,padding:-padding]
|
||||||
return grad, grad_sel, grad_w, grad_b, None
|
return grad, grad_sel, grad_w, grad_b, None
|
||||||
|
|
||||||
|
|
||||||
|
@ -204,7 +213,8 @@ class SwitchedConvHardRouting(nn.Module):
|
||||||
Conv2d(breadth, breadth, 1, stride=self.stride))
|
Conv2d(breadth, breadth, 1, stride=self.stride))
|
||||||
else:
|
else:
|
||||||
self.coupler = None
|
self.coupler = None
|
||||||
self.gate = HardRoutingGate(breadth, hard_en=hard_en)
|
self.gate = HardRoutingGate(breadth, hard_en=True)
|
||||||
|
self.hard_en = hard_en
|
||||||
|
|
||||||
self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz))
|
self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz))
|
||||||
if bias:
|
if bias:
|
||||||
|
@ -251,7 +261,7 @@ class SwitchedConvHardRouting(nn.Module):
|
||||||
self.last_select = selector.detach().clone()
|
self.last_select = selector.detach().clone()
|
||||||
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
|
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
|
||||||
|
|
||||||
if False:
|
if self.hard_en:
|
||||||
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
|
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
|
||||||
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
|
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -232,27 +232,41 @@ def register_vqvae3_hard_switch(opt_net, opt):
|
||||||
|
|
||||||
def performance_test():
|
def performance_test():
|
||||||
# For breadth=32:
|
# For breadth=32:
|
||||||
# Custom_cuda_naive: 28.9s
|
# Custom_cuda_naive: 15.4
|
||||||
# Torch_native: 29.2s
|
# Torch_native: 29.2s
|
||||||
#
|
#
|
||||||
# For breadth=8
|
# For breadth=8
|
||||||
# Custom_cuda_naive: 18.4s
|
# Custom_cuda_naive: 9.8
|
||||||
# Torch_native: 10s
|
# Torch_native: 10s
|
||||||
cfg = {
|
cfg = {
|
||||||
'mode': 'lambda',
|
'mode': 'lambda',
|
||||||
'breadth': 8,
|
'breadth': 16,
|
||||||
'hard_enabled': True,
|
'hard_enabled': True,
|
||||||
'dropout': 0.4
|
'dropout': 0,
|
||||||
}
|
}
|
||||||
net = VQVAE3HardSwitch(cfg=cfg).to('cuda')
|
net = VQVAE3HardSwitch(cfg=cfg).to('cuda').double()
|
||||||
|
cfg['hard_enabled'] = False
|
||||||
|
netO = VQVAE3HardSwitch(cfg=cfg).double()
|
||||||
|
netO.load_state_dict(net.state_dict())
|
||||||
|
netO = netO.cpu()
|
||||||
|
|
||||||
loss = nn.L1Loss()
|
loss = nn.L1Loss()
|
||||||
opt = torch.optim.Adam(net.parameters(), lr=1e-4)
|
opt = torch.optim.Adam(net.parameters(), lr=1e-4)
|
||||||
started = time()
|
started = time()
|
||||||
for j in tqdm(range(10)):
|
for j in tqdm(range(10)):
|
||||||
inp = torch.rand((8, 3, 256, 256), device='cuda')
|
inp = torch.rand((4, 3, 64, 64), device='cuda', dtype=torch.double)
|
||||||
res = net(inp)[0]
|
res = net(inp)[0]
|
||||||
l = loss(res, inp)
|
l = loss(res, inp)
|
||||||
l.backward()
|
l.backward()
|
||||||
|
|
||||||
|
res2 = netO(inp.cpu())[0]
|
||||||
|
l = loss(res2, inp.cpu())
|
||||||
|
l.backward()
|
||||||
|
|
||||||
|
for p, op in zip(net.parameters(), netO.parameters()):
|
||||||
|
diff = p.grad.cpu() - op.grad
|
||||||
|
print(diff.max())
|
||||||
|
|
||||||
opt.step()
|
opt.step()
|
||||||
net.zero_grad()
|
net.zero_grad()
|
||||||
print("Elapsed: ", (time()-started))
|
print("Elapsed: ", (time()-started))
|
||||||
|
|
180
codes/models/vqvae/vqvae_3_separated_coupler.py
Normal file
180
codes/models/vqvae/vqvae_3_separated_coupler.py
Normal file
|
@ -0,0 +1,180 @@
|
||||||
|
import torch
|
||||||
|
from kornia import filter2D
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
import torch.distributed as distributed
|
||||||
|
|
||||||
|
from models.vqvae.vqvae import ResBlock, Quantize
|
||||||
|
from trainer.networks import register_model
|
||||||
|
from utils.util import checkpoint, opt_get
|
||||||
|
|
||||||
|
|
||||||
|
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
|
||||||
|
class UpsampleConv(nn.Module):
|
||||||
|
def __init__(self, in_filters, out_filters, kernel_size, padding):
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(in_filters, out_filters, kernel_size, padding=padding)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||||||
|
return self.conv(up)
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if stride == 4:
|
||||||
|
blocks = [
|
||||||
|
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||||
|
nn.LeakyReLU(inplace=True),
|
||||||
|
nn.Conv2d(channel // 2, channel, 5, stride=2, padding=2),
|
||||||
|
nn.LeakyReLU(inplace=True),
|
||||||
|
nn.Conv2d(channel, channel, 3, padding=1),
|
||||||
|
]
|
||||||
|
|
||||||
|
elif stride == 2:
|
||||||
|
blocks = [
|
||||||
|
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||||
|
nn.LeakyReLU(inplace=True),
|
||||||
|
nn.Conv2d(channel // 2, channel, 3, padding=1),
|
||||||
|
]
|
||||||
|
|
||||||
|
for i in range(n_res_block):
|
||||||
|
blocks.append(ResBlock(channel, n_res_channel))
|
||||||
|
|
||||||
|
blocks.append(nn.LeakyReLU(inplace=True))
|
||||||
|
|
||||||
|
self.blocks = nn.Sequential(*blocks)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
return self.blocks(input)
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
|
||||||
|
|
||||||
|
for i in range(n_res_block):
|
||||||
|
blocks.append(ResBlock(channel, n_res_channel))
|
||||||
|
|
||||||
|
blocks.append(nn.LeakyReLU(inplace=True))
|
||||||
|
|
||||||
|
if stride == 4:
|
||||||
|
blocks.extend(
|
||||||
|
[
|
||||||
|
UpsampleConv(channel, channel // 2, 5, padding=2),
|
||||||
|
nn.LeakyReLU(inplace=True),
|
||||||
|
UpsampleConv(
|
||||||
|
channel // 2, out_channel, 5, padding=2
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
elif stride == 2:
|
||||||
|
blocks.append(
|
||||||
|
UpsampleConv(channel, out_channel, 5, padding=2)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.blocks = nn.Sequential(*blocks)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
return self.blocks(input)
|
||||||
|
|
||||||
|
|
||||||
|
class VQVAE3(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channel=3,
|
||||||
|
channel=128,
|
||||||
|
n_res_block=2,
|
||||||
|
n_res_channel=32,
|
||||||
|
codebook_dim=64,
|
||||||
|
codebook_size=512,
|
||||||
|
decay=0.99,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.initial_conv = nn.Sequential(*[nn.Conv2d(in_channel, 32, 3, padding=1),
|
||||||
|
nn.LeakyReLU(inplace=True)])
|
||||||
|
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4)
|
||||||
|
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
|
||||||
|
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||||||
|
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||||||
|
self.dec_t = Decoder(
|
||||||
|
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
|
||||||
|
)
|
||||||
|
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||||||
|
self.quantize_b = Quantize(codebook_dim, codebook_size)
|
||||||
|
self.upsample_t = UpsampleConv(
|
||||||
|
codebook_dim, codebook_dim, 5, padding=2
|
||||||
|
)
|
||||||
|
self.dec = Decoder(
|
||||||
|
codebook_dim + codebook_dim,
|
||||||
|
32,
|
||||||
|
channel,
|
||||||
|
n_res_block,
|
||||||
|
n_res_channel,
|
||||||
|
stride=4,
|
||||||
|
)
|
||||||
|
self.final_conv = nn.Conv2d(32, in_channel, 3, padding=1)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
quant_t, quant_b, diff, _, _ = self.encode(input)
|
||||||
|
dec = self.decode(quant_t, quant_b)
|
||||||
|
|
||||||
|
return dec, diff
|
||||||
|
|
||||||
|
def encode(self, input):
|
||||||
|
fea = self.initial_conv(input)
|
||||||
|
enc_b = checkpoint(self.enc_b, fea)
|
||||||
|
enc_t = checkpoint(self.enc_t, enc_b)
|
||||||
|
|
||||||
|
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
|
||||||
|
quant_t, diff_t, id_t = self.quantize_t(quant_t)
|
||||||
|
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||||
|
diff_t = diff_t.unsqueeze(0)
|
||||||
|
|
||||||
|
dec_t = checkpoint(self.dec_t, quant_t)
|
||||||
|
enc_b = torch.cat([dec_t, enc_b], 1)
|
||||||
|
|
||||||
|
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
|
||||||
|
quant_b, diff_b, id_b = self.quantize_b(quant_b)
|
||||||
|
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||||
|
diff_b = diff_b.unsqueeze(0)
|
||||||
|
|
||||||
|
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
|
||||||
|
|
||||||
|
def decode(self, quant_t, quant_b):
|
||||||
|
upsample_t = self.upsample_t(quant_t)
|
||||||
|
quant = torch.cat([upsample_t, quant_b], 1)
|
||||||
|
dec = checkpoint(self.dec, quant)
|
||||||
|
dec = checkpoint(self.final_conv, dec)
|
||||||
|
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def decode_code(self, code_t, code_b):
|
||||||
|
quant_t = self.quantize_t.embed_code(code_t)
|
||||||
|
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||||
|
quant_b = self.quantize_b.embed_code(code_b)
|
||||||
|
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||||
|
|
||||||
|
dec = self.decode(quant_t, quant_b)
|
||||||
|
|
||||||
|
return dec
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def register_vqvae3(opt_net, opt):
|
||||||
|
kw = opt_get(opt_net, ['kwargs'], {})
|
||||||
|
return VQVAE3(**kw)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
v = VQVAE3()
|
||||||
|
print(v(torch.randn(1,3,128,128))[0].shape)
|
|
@ -18,3 +18,4 @@ vector_quantize_pytorch
|
||||||
orjson
|
orjson
|
||||||
einops
|
einops
|
||||||
gsa-pytorch
|
gsa-pytorch
|
||||||
|
lambda-networks
|
Loading…
Reference in New Issue
Block a user