forked from mrq/DL-Art-School
Update ADF to be compatible with classical mel spectrograms
This commit is contained in:
parent
c68669e1e1
commit
d29ea0df5e
|
@ -472,7 +472,7 @@ def test_vqvae_model():
|
||||||
)
|
)
|
||||||
quant_weights = torch.load('D:\\dlas\\experiments\\retrained_dvae_8192_clips.pth')
|
quant_weights = torch.load('D:\\dlas\\experiments\\retrained_dvae_8192_clips.pth')
|
||||||
model.quantizer.load_state_dict(quant_weights, strict=True)
|
model.quantizer.load_state_dict(quant_weights, strict=True)
|
||||||
#torch.save(model.state_dict(), 'sample.pth')
|
torch.save(model.state_dict(), 'sample.pth')
|
||||||
|
|
||||||
print_network(model)
|
print_network(model)
|
||||||
o = model(clip, ts, cond)
|
o = model(clip, ts, cond)
|
||||||
|
|
|
@ -208,15 +208,16 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
||||||
def perform_diffusion_tfd(self, audio, codes, text):
|
def perform_diffusion_tfd(self, audio, codes, text):
|
||||||
SAMPLE_RATE = 24000
|
SAMPLE_RATE = 24000
|
||||||
audio_resampled = torchaudio.functional.resample(audio, 22050, SAMPLE_RATE).unsqueeze(0)
|
audio_resampled = torchaudio.functional.resample(audio, 22050, SAMPLE_RATE).unsqueeze(0)
|
||||||
mel = wav_to_univnet_mel(audio_resampled, do_normalization=True)
|
vmel = wav_to_mel(audio)
|
||||||
gen_mel = self.diffuser.p_sample_loop(self.model, mel.shape,
|
umel = wav_to_univnet_mel(audio_resampled, do_normalization=True)
|
||||||
model_kwargs={'truth_mel': mel,
|
gen_mel = self.diffuser.p_sample_loop(self.model, umel.shape,
|
||||||
|
model_kwargs={'truth_mel': vmel,
|
||||||
'conditioning_input': None,
|
'conditioning_input': None,
|
||||||
'disable_diversity': True})
|
'disable_diversity': True})
|
||||||
|
|
||||||
gen_wav = self.local_modules['vocoder'].inference(denormalize_mel(gen_mel))
|
gen_wav = self.local_modules['vocoder'].inference(denormalize_mel(gen_mel))
|
||||||
real_dec = self.local_modules['vocoder'].inference(denormalize_mel(mel))
|
real_dec = self.local_modules['vocoder'].inference(denormalize_mel(umel))
|
||||||
return gen_wav.float(), real_dec, gen_mel, mel, SAMPLE_RATE
|
return gen_wav.float(), real_dec, gen_mel, umel, SAMPLE_RATE
|
||||||
|
|
||||||
def load_projector(self):
|
def load_projector(self):
|
||||||
"""
|
"""
|
||||||
|
@ -334,12 +335,12 @@ if __name__ == '__main__':
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_tts_diffusion_tfd11_quant\\train.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_tts_diffusion_tfd11_quant.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_tts_diffusion_tfd11_quant\\models\\14500_generator_ema.pth').cuda()
|
load_path='X:\\dlas\\experiments\\train_tts_diffusion_tfd12_linear_dvae\\models\\12000_generator.pth').cuda()
|
||||||
opt_eval = {'eval_tsv': 'Y:\\libritts\\test-clean\\transcribed-oco-realtext.tsv', 'diffusion_steps': 100,
|
opt_eval = {'eval_tsv': 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv', 'diffusion_steps': 50,
|
||||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||||
'diffusion_schedule': 'cosine', 'diffusion_type': 'tfd'}
|
'diffusion_schedule': 'linear', 'diffusion_type': 'tfd'}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval', 'step': 100, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval', 'step': 101, 'device': 'cuda', 'opt': {}}
|
||||||
eval = AudioDiffusionFid(diffusion, opt_eval, env)
|
eval = AudioDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
Loading…
Reference in New Issue
Block a user