forked from mrq/DL-Art-School
Add unsupervised_audio_dataset
This commit is contained in:
parent
bc603c3231
commit
e513052fca
|
@ -75,6 +75,8 @@ def create_dataset(dataset_opt, return_collate=False):
|
|||
collate = C(dataset_opt)
|
||||
elif mode == 'wavfile_clips':
|
||||
from data.audio.wavfile_dataset import WavfileDataset as D
|
||||
elif mode == 'unsupervised_audio':
|
||||
from data.audio.unsupervised_audio_dataset import UnsupervisedAudioDataset as D
|
||||
elif mode == 'stop_prediction':
|
||||
from models.tacotron2.hparams import create_hparams
|
||||
default_params = create_hparams()
|
||||
|
|
154
codes/data/audio/unsupervised_audio_dataset.py
Normal file
154
codes/data/audio/unsupervised_audio_dataset.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
import os
|
||||
import pathlib
|
||||
import random
|
||||
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from audio2numpy import open_audio
|
||||
from tqdm import tqdm
|
||||
|
||||
from data.audio.wav_aug import WavAugmentor
|
||||
from data.util import find_files_of_type, is_wav_file, is_audio_file
|
||||
from models.tacotron2.taco_utils import load_wav_to_torch
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def load_audio(audiopath, sampling_rate):
|
||||
if audiopath[:-4] == '.wav':
|
||||
audio, lsr = load_wav_to_torch(audiopath)
|
||||
else:
|
||||
audio, lsr = open_audio(audiopath)
|
||||
audio = torch.FloatTensor(audio)
|
||||
|
||||
# Remove any channel data.
|
||||
if len(audio.shape) > 1:
|
||||
if audio.shape[0] < 5:
|
||||
audio = audio[0]
|
||||
else:
|
||||
assert audio.shape[1] < 5
|
||||
audio = audio[:, 0]
|
||||
|
||||
if lsr != sampling_rate:
|
||||
if lsr < sampling_rate:
|
||||
print(f'{audiopath} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {sampling_rate}. This is not a good idea.')
|
||||
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=sampling_rate/lsr, mode='nearest', recompute_scale_factor=False).squeeze()
|
||||
|
||||
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
||||
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
||||
if torch.any(audio > 2) or not torch.any(audio < 0):
|
||||
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
||||
audio.clip_(-1, 1)
|
||||
|
||||
return audio.unsqueeze(0)
|
||||
|
||||
|
||||
class UnsupervisedAudioDataset(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, opt):
|
||||
path = opt['path']
|
||||
cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case.
|
||||
if not isinstance(path, list):
|
||||
path = [path]
|
||||
if os.path.exists(cache_path):
|
||||
self.audiopaths = torch.load(cache_path)
|
||||
else:
|
||||
print("Building cache..")
|
||||
self.audiopaths = []
|
||||
for p in path:
|
||||
self.audiopaths.extend(find_files_of_type('img', p, qualifier=is_audio_file)[0])
|
||||
torch.save(self.audiopaths, cache_path)
|
||||
|
||||
# Parse options
|
||||
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
||||
self.pad_to = opt_get(opt, ['pad_to_seconds'], None)
|
||||
if self.pad_to is not None:
|
||||
self.pad_to *= self.sampling_rate
|
||||
self.pad_to = opt_get(opt, ['pad_to_samples'], self.pad_to)
|
||||
|
||||
self.extra_samples = opt_get(opt, ['extra_samples'], 0)
|
||||
self.extra_sample_len = opt_get(opt, ['extra_sample_length'], 2)
|
||||
self.extra_sample_len *= self.sampling_rate
|
||||
|
||||
def get_audio_for_index(self, index):
|
||||
audiopath = self.audiopaths[index]
|
||||
audio = load_audio(audiopath, self.sampling_rate)
|
||||
return audio, audiopath
|
||||
|
||||
def get_related_audio_for_index(self, index):
|
||||
if self.extra_samples <= 0:
|
||||
return None
|
||||
audiopath = self.audiopaths[index]
|
||||
related_files = find_files_of_type('img', os.path.dirname(audiopath), qualifier=is_audio_file)[0]
|
||||
assert audiopath in related_files
|
||||
assert len(related_files) < 50000 # Sanity check to ensure we aren't loading "related files" that aren't actually related.
|
||||
related_files.remove(audiopath)
|
||||
related_clips = []
|
||||
random.shuffle(related_clips)
|
||||
for j, related_file in enumerate(related_files):
|
||||
rel_clip = load_audio(related_file, self.sampling_rate)
|
||||
gap = rel_clip.shape[-1] - self.extra_sample_len
|
||||
if gap < 0:
|
||||
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
||||
elif gap > 0:
|
||||
rand_start = random.randint(0, gap)
|
||||
rel_clip = rel_clip[:, rand_start:rand_start+self.extra_sample_len]
|
||||
related_clips.append(rel_clip)
|
||||
if j >= self.extra_samples:
|
||||
break
|
||||
actual_extra_samples = j
|
||||
while j < self.extra_samples:
|
||||
related_clips.append(torch.zeros(1, self.extra_sample_len))
|
||||
j += 1
|
||||
return torch.stack(related_clips, dim=0), actual_extra_samples
|
||||
|
||||
def __getitem__(self, index):
|
||||
# Split audio_norm into two tensors of equal size.
|
||||
audio_norm, filename = self.get_audio_for_index(index)
|
||||
alt_files, actual_samples = self.get_related_audio_for_index(index)
|
||||
|
||||
# This is required when training to make sure all clips align.
|
||||
if self.pad_to is not None:
|
||||
if audio_norm.shape[-1] <= self.pad_to:
|
||||
audio_norm = torch.nn.functional.pad(audio_norm, (0, self.pad_to - audio_norm.shape[-1]))
|
||||
else:
|
||||
gap = audio_norm.shape[-1] - self.pad_to
|
||||
start = random.randint(0, gap-1)
|
||||
audio_norm = audio_norm[:, start:start+self.pad_to]
|
||||
|
||||
output = {
|
||||
'clip': audio_norm,
|
||||
'alt_clips': alt_files,
|
||||
'num_alt_clips': actual_samples, # We need to pad so that the dataloader can combine these.
|
||||
'path': filename,
|
||||
}
|
||||
return output
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
params = {
|
||||
'mode': 'unsupervised_audio',
|
||||
'path': ['Z:\\split\\cleaned\\books0'],
|
||||
'cache_path': 'E:\\audio\\remote-cache.pth',
|
||||
'sampling_rate': 22050,
|
||||
'pad_to_seconds': 5,
|
||||
'phase': 'train',
|
||||
'n_workers': 0,
|
||||
'batch_size': 16,
|
||||
'extra_samples': 4,
|
||||
}
|
||||
from data import create_dataset, create_dataloader, util
|
||||
|
||||
ds = create_dataset(params)
|
||||
dl = create_dataloader(ds, params)
|
||||
i = 0
|
||||
for b in tqdm(dl):
|
||||
for b_ in range(16):
|
||||
pass
|
||||
#torchaudio.save(f'{i}_clip1_{b_}.wav', b['clip1'][b_], ds.sampling_rate)
|
||||
#torchaudio.save(f'{i}_clip2_{b_}.wav', b['clip2'][b_], ds.sampling_rate)
|
||||
#i += 1
|
Loading…
Reference in New Issue
Block a user