forked from mrq/DL-Art-School
misc
This commit is contained in:
parent
16936881e5
commit
e67e82be2d
|
@ -208,6 +208,8 @@ if __name__ == '__main__':
|
|||
for b in tqdm(dl):
|
||||
for b_ in range(b['clip'].shape[0]):
|
||||
#pass
|
||||
#torchaudio.save(f'{i}_clip_{b_}.wav', b['clip'][b_], ds.sampling_rate)
|
||||
#torchaudio.save(f'{i}_alt_clip_{b_}.wav', b['alt_clips'][b_], ds.sampling_rate)
|
||||
torchaudio.save(f'{i}_clip_{b_}.wav', b['clip'][b_], ds.sampling_rate)
|
||||
torchaudio.save(f'{i}_alt_clip_{b_}.wav', b['alt_clips'][b_], ds.sampling_rate)
|
||||
i += 1
|
||||
if i > 200:
|
||||
break
|
||||
|
|
|
@ -1,334 +0,0 @@
|
|||
import itertools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.audio.music.music_quantizer2 import MusicQuantizer2
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock, AttentionBlock, TimestepEmbedSequential
|
||||
from models.lucidrains.x_transformers import Encoder
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network
|
||||
|
||||
|
||||
def is_latent(t):
|
||||
return t.dtype == torch.float
|
||||
|
||||
def is_sequence(t):
|
||||
return t.dtype == torch.long
|
||||
|
||||
|
||||
class MultiGroupEmbedding(nn.Module):
|
||||
def __init__(self, tokens, groups, dim):
|
||||
super().__init__()
|
||||
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
|
||||
|
||||
def forward(self, x):
|
||||
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
|
||||
return torch.cat(h, dim=-1)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
efficient_config=False,
|
||||
use_scale_shift_norm=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
||||
eff_kernel = 1 if efficient_config else 3
|
||||
eff_padding = 0 if efficient_config else 1
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DiffusionLayer(TimestepBlock):
|
||||
def __init__(self, model_channels, dropout, num_heads):
|
||||
super().__init__()
|
||||
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True)
|
||||
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
|
||||
|
||||
def forward(self, x, time_emb):
|
||||
y = self.resblk(x, time_emb)
|
||||
return self.attn(y)
|
||||
|
||||
|
||||
class TransformerDiffusion(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model_channels=512,
|
||||
prenet_layers=3,
|
||||
num_layers=8,
|
||||
in_channels=256,
|
||||
input_vec_dim=512,
|
||||
out_channels=512, # mean and variance
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, model_channels),
|
||||
nn.SiLU(),
|
||||
linear(model_channels, model_channels),
|
||||
)
|
||||
|
||||
self.input_converter = nn.Linear(input_vec_dim, model_channels)
|
||||
self.code_converter = Encoder(
|
||||
dim=model_channels,
|
||||
depth=prenet_layers,
|
||||
heads=model_channels//64,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
zero_init_branch_output=True,
|
||||
ff_mult=1,
|
||||
)
|
||||
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
|
||||
self.intg = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
||||
self.layers = TimestepEmbedSequential(*[DiffusionLayer(model_channels, dropout, model_channels // 64) for _ in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
self.debug_codes = {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'layers': list(self.layers.parameters()) + list(self.inp_block.parameters()),
|
||||
'code_converters': list(self.input_converter.parameters()) + list(self.code_converter.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def timestep_independent(self, codes, expected_seq_len):
|
||||
code_emb = self.input_converter(codes)
|
||||
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||
device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1),
|
||||
code_emb)
|
||||
code_emb = self.code_converter(code_emb)
|
||||
|
||||
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
|
||||
return expanded_code_emb
|
||||
|
||||
def forward(self, x, timesteps, codes=None, conditioning_input=None, precomputed_code_embeddings=None, conditioning_free=False):
|
||||
if precomputed_code_embeddings is not None:
|
||||
assert codes is None and conditioning_input is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
|
||||
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
|
||||
unused_params.extend(list(self.code_converter.parameters()))
|
||||
else:
|
||||
if precomputed_code_embeddings is not None:
|
||||
code_emb = precomputed_code_embeddings
|
||||
else:
|
||||
code_emb = self.timestep_independent(codes, x.shape[-1])
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
code_emb = code_emb.permute(0,2,1)
|
||||
|
||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
x = self.inp_block(x)
|
||||
x = self.intg(torch.cat([x, code_emb], dim=1))
|
||||
for layer in self.layers:
|
||||
x = checkpoint(layer, x, blk_emb)
|
||||
|
||||
x = x.float()
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||
def __init__(self, freeze_quantizer_until=20000, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
self.freeze_quantizer_until = freeze_quantizer_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
|
||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||
del self.quantizer.up
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.internal_step = step
|
||||
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
|
||||
self.quantizer.quantizer.temperature = max(
|
||||
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
|
||||
self.quantizer.min_gumbel_temperature,
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
|
||||
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
||||
with torch.set_grad_enabled(quant_grad_enabled):
|
||||
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
|
||||
proj = proj.permute(0,2,1)
|
||||
|
||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||
if not quant_grad_enabled:
|
||||
unused = 0
|
||||
for p in self.quantizer.parameters():
|
||||
unused = unused + p.mean() * 0
|
||||
proj = proj + unused
|
||||
diversity_loss = diversity_loss * 0
|
||||
|
||||
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
|
||||
if disable_diversity:
|
||||
return diff
|
||||
return diff, diversity_loss
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.quantizer.total_codes > 0:
|
||||
return {'histogram_codes': self.quantizer.codes[:self.quantizer.total_codes]}
|
||||
else:
|
||||
return {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
groups = {
|
||||
'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])),
|
||||
'res_layers': list(itertools.chain.from_iterable([lyr.resblk.parameters() for lyr in self.diff.layers])),
|
||||
'quantizer_encoder': list(self.quantizer.encoder.parameters()),
|
||||
'quant_codebook': [self.quantizer.quantizer.codevectors],
|
||||
'out': list(self.diff.out.parameters()),
|
||||
'x_proj': list(self.diff.inp_block.parameters()),
|
||||
'layers': list(self.diff.layers.parameters()),
|
||||
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
|
||||
'time_embed': list(self.diff.time_embed.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion9(opt_net, opt):
|
||||
return TransformerDiffusion(**opt_net['kwargs'])
|
||||
|
||||
|
||||
@register_model
|
||||
def register_transformer_diffusion9_with_quantizer(opt_net, opt):
|
||||
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
|
||||
|
||||
|
||||
"""
|
||||
# For TFD5
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 256, 400)
|
||||
aligned_sequence = torch.randn(2,100,512)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusion(model_channels=3072, model_channels=1536, model_channels=1536)
|
||||
torch.save(model, 'sample.pth')
|
||||
print_network(model)
|
||||
o = model(clip, ts, aligned_sequence, cond)
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 256, 400)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusionWithQuantizer(model_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6)
|
||||
model.get_grad_norm_parameter_groups()
|
||||
|
||||
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
|
||||
#diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth')
|
||||
model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||
#model.diff.load_state_dict(diff_weights)
|
||||
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
print_network(model)
|
||||
o = model(clip, ts, clip, cond)
|
||||
|
|
@ -1,9 +1,15 @@
|
|||
from itertools import groupby
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from transformers import Wav2Vec2CTCTokenizer
|
||||
|
||||
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
||||
from models.audio.tts.ctc_code_generator import CtcCodeGenerator
|
||||
from models.audio.tts.transformer_diffusion_tts import TransformerDiffusionTTS
|
||||
from scripts.audio.gen.speech_synthesis_utils import load_discrete_vocoder_diffuser, load_univnet_vocoder, load_clvp
|
||||
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, denormalize_mel
|
||||
from utils.util import load_audio
|
||||
|
||||
|
||||
def get_ctc_metadata(codes):
|
||||
|
@ -28,26 +34,61 @@ def get_ctc_metadata(codes):
|
|||
return rcodes, pads, repeats
|
||||
|
||||
|
||||
def decode_ctc_metadata(rcodes, pads, repeats):
|
||||
outp = []
|
||||
for s in range(rcodes.shape[-1]):
|
||||
outp = outp + [0 for _ in range(pads[s])]
|
||||
outp = outp + [rcodes[s].item() for _ in range(repeats[s])]
|
||||
return torch.tensor(outp, device=rcodes.device)
|
||||
|
||||
|
||||
def diffuse(text, codes, cond):
|
||||
RATIO = 263/140
|
||||
|
||||
codes = codes.cuda();
|
||||
cond = cond.cuda()
|
||||
|
||||
bpe_tokenizer = VoiceBpeTokenizer('../experiments/bpe_lowercase_asr_256.json')
|
||||
clvp = load_clvp().cuda()
|
||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=200, schedule='linear',
|
||||
enable_conditioning_free_guidance=False,
|
||||
conditioning_free_k=1)
|
||||
diffusion_model = TransformerDiffusionTTS(model_channels=896, num_layers=16, in_channels=100, in_latent_channels=1024,
|
||||
token_count=256, out_channels=200, dropout=0, unconditioned_percentage=0)
|
||||
diffusion_model.load_state_dict(torch.load('X:\\dlas\\experiments\\train_speech_diffusion_from_ctc_tfd5\\models\\26500_generator_ema.pth'))
|
||||
diffusion_model = diffusion_model.cuda().eval()
|
||||
with torch.no_grad():
|
||||
text_codes = torch.LongTensor(bpe_tokenizer.encode(text)).unsqueeze(0).to(codes.device)
|
||||
clvp_latent = clvp.embed_text(text_codes)
|
||||
cond_mel = TorchMelSpectrogramInjector({'n_mel_channels': 100, 'mel_fmax': 11000, 'filter_length': 8000, 'normalize': True,
|
||||
'true_normalization': True, 'in': 'in', 'out': 'out'}, {})({'in': cond})['out']
|
||||
gen = diffuser.p_sample_loop(diffusion_model, (1,100,int(codes.shape[-1]*RATIO)), model_kwargs={'codes': codes,
|
||||
'conditioning_input': cond_mel,
|
||||
'type': torch.tensor([0], device=codes.device),
|
||||
'clvp_input': clvp_latent})
|
||||
gen_denorm = denormalize_mel(gen)
|
||||
vocoder = load_univnet_vocoder().cuda()
|
||||
gen_wav = vocoder.inference(gen_denorm)
|
||||
return gen_wav
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = CtcCodeGenerator(model_dim=512, layers=16, dropout=0).eval().cuda()
|
||||
model.load_state_dict(torch.load('../experiments/train_encoder_build_ctc_alignments_toy/models/76000_generator_ema.pth'))
|
||||
|
||||
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained('jbetker/tacotron-symbols')
|
||||
text = "and now, what do you want."
|
||||
seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0]
|
||||
codes, pads, repeats = get_ctc_metadata(seq)
|
||||
text = "Can I have tea and a pot of butter, please?"
|
||||
#seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0]
|
||||
#codes, pads, repeats = get_ctc_metadata(seq)
|
||||
codes = tokenizer.encode(text)
|
||||
|
||||
with torch.no_grad():
|
||||
codes = codes.cuda().unsqueeze(0)
|
||||
pads = pads.cuda().unsqueeze(0)
|
||||
repeats = repeats.cuda().unsqueeze(0)
|
||||
|
||||
ppads = pads.clone()
|
||||
prepeats = repeats.clone()
|
||||
mask = torch.zeros_like(pads)
|
||||
conf_str = tokenizer.decode(codes[0].tolist())
|
||||
codes = torch.tensor(codes).cuda().unsqueeze(0)
|
||||
ppads = torch.zeros_like(codes)
|
||||
prepeats = torch.zeros_like(codes)
|
||||
mask = torch.zeros_like(codes)
|
||||
for s in range(codes.shape[-1]):
|
||||
logits, confidences = model.inference(codes, pads * mask, repeats * mask)
|
||||
logits, confidences = model.inference(codes, ppads * mask, prepeats * mask)
|
||||
|
||||
confidences = confidences * mask.logical_not() # prevent prediction of tokens that have already been predicted.
|
||||
i = confidences.argmax(dim=-1)
|
||||
|
@ -59,5 +100,9 @@ if __name__ == '__main__':
|
|||
prepeats[0,i] = pred_repeats
|
||||
mask[0,i] = 1
|
||||
|
||||
conf_str = conf_str[:i] + conf_str[i].upper() + conf_str[i+1:]
|
||||
print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}")
|
||||
#print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}")
|
||||
|
||||
decoded_codes = decode_ctc_metadata(codes[0], ppads[0], prepeats[0]).unsqueeze(0)
|
||||
cond = load_audio('D:\\tortoise-tts\\tortoise\\voices\\train_dotrice\\1.wav', 22050).unsqueeze(0).cuda()
|
||||
decoded_wav = diffuse(text, decoded_codes, cond)
|
||||
torchaudio.save('output.wav', decoded_wav.cpu()[0], 24000)
|
|
@ -62,6 +62,8 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
self.local_modules['codegen'] = get_music_codegen()
|
||||
elif 'from_codes_quant' == mode:
|
||||
self.diffusion_fn = self.perform_diffusion_from_codes_quant
|
||||
elif 'from_codes_quant_gradual_decode' == mode:
|
||||
self.diffusion_fn = self.perform_diffusion_from_codes_quant_gradual_decode
|
||||
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
|
||||
'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
||||
|
||||
|
@ -133,6 +135,38 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
|
||||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||
|
||||
def perform_diffusion_from_codes_quant_gradual_decode(self, audio, sample_rate=22050):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
mel_norm = normalize_mel(mel)
|
||||
guidance = torch.zeros_like(mel_norm)
|
||||
mask = torch.zeros_like(mel_norm)
|
||||
GRADS = 4
|
||||
for k in range(GRADS):
|
||||
gen_mel = self.diffuser.p_sample_loop_with_guidance(self.model,
|
||||
guidance_input=guidance, mask=mask,
|
||||
model_kwargs={'truth_mel': mel,
|
||||
'conditioning_input': torch.zeros_like(mel_norm[:,:,:390]),
|
||||
'disable_diversity': True})
|
||||
pk = int(k*(mel_norm.shape[1]/GRADS))
|
||||
ek = int((k+1)*(mel_norm.shape[1]/GRADS))
|
||||
guidance[:, pk:ek] = gen_mel[:, pk:ek]
|
||||
mask[:, :ek] = 1
|
||||
|
||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||
output_shape = (1,16,audio.shape[-1]//16)
|
||||
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||
gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||
model_kwargs={'aligned_conditioning': gen_mel_denorm})
|
||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||
|
||||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||
|
||||
|
||||
def project(self, sample, sample_rate):
|
||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||
|
@ -201,13 +235,15 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_tfd_quant7.yml', 'generator',
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_ar_prior.yml', 'generator',
|
||||
also_load_savepoint=False,
|
||||
load_path='X:\\dlas\\experiments\\train_music_diffusion_unet_music\\models\\46500_generator_ema.pth'
|
||||
load_path='X:\\dlas\\experiments\\train_music_diffusion_ar_prior\\models\\22000_generator_ema.pth'
|
||||
).cuda()
|
||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 100,
|
||||
'conditioning_free': True, 'conditioning_free_k': 1,
|
||||
opt_eval = {#'path': 'Y:\\split\\yt-music-eval',
|
||||
'path': 'E:\\music_eval',
|
||||
'diffusion_steps': 100,
|
||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'from_codes_quant'}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 561, 'device': 'cuda', 'opt': {}}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 502, 'device': 'cuda', 'opt': {}}
|
||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||
print(eval.perform_eval())
|
||||
|
|
Loading…
Reference in New Issue
Block a user