Add novograd optimizer

This commit is contained in:
James Betker 2020-09-06 17:27:08 -06:00
parent a5c2388368
commit e8613041c0
5 changed files with 75 additions and 5 deletions

View File

@ -565,4 +565,3 @@ class ConfigurableSwitchedResidualGenerator3(nn.Module):
val["switch_%i_specificity" % (i,)] = means[i]
val["switch_%i_histogram" % (i,)] = hists[i]
return val

71
codes/models/novograd.py Normal file
View File

@ -0,0 +1,71 @@
# Author Masashi Kimura (Convergence Lab.)
import torch
from torch import optim
import math
class NovoGrad(optim.Optimizer):
def __init__(self, params, grad_averaging=False, lr=0.1, betas=(0.95, 0.98), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(NovoGrad, self).__init__(params, defaults)
self._lr = lr
self._beta1 = betas[0]
self._beta2 = betas[1]
self._eps = eps
self._wd = weight_decay
self._grad_averaging = grad_averaging
self._momentum_initialized = False
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
if not self._momentum_initialized:
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('NovoGrad does not support sparse gradients')
v = torch.norm(grad)**2
m = grad/(torch.sqrt(v) + self._eps) + self._wd * p.data
state['step'] = 0
state['v'] = v
state['m'] = m
state['grad_ema'] = None
self._momentum_initialized = True
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
state['step'] += 1
step, v, m = state['step'], state['v'], state['m']
grad_ema = state['grad_ema']
grad = p.grad.data
g2 = torch.norm(grad)**2
grad_ema = g2 if grad_ema is None else grad_ema * \
self._beta2 + g2*(1. - self._beta2)
grad *= 1.0 / (torch.sqrt(grad_ema) + self._eps)
if self._grad_averaging:
grad *= (1. - self._beta1)
g2 = torch.norm(grad)**2
v = self._beta2*v + (1. - self._beta2)*g2
m = self._beta1*m + (grad / (torch.sqrt(v) + self._eps) + self._wd*p.data)
bias_correction1 = 1 - self._beta1 ** step
bias_correction2 = 1 - self._beta2 ** step
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
state['v'], state['m'] = v, m
state['grad_ema'] = grad_ema
p.data.add_(-step_size, m)
return loss

View File

@ -6,7 +6,7 @@ import torch
from apex import amp
from collections import OrderedDict
from .injectors import create_injector
from apex.optimizers import FusedNovoGrad
from models.novograd import NovoGrad
logger = logging.getLogger('base')
@ -56,7 +56,7 @@ class ConfigurableStep(Module):
weight_decay=self.step_opt['weight_decay'],
betas=(self.step_opt['beta1'], self.step_opt['beta2']))
elif self.step_opt['optimizer'] == 'novograd':
opt = FusedNovoGrad(optim_params, lr=self.step_opt['lr'], weight_decay=self.step_opt['weight_decay'],
opt = NovoGrad(optim_params, lr=self.step_opt['lr'], weight_decay=self.step_opt['weight_decay'],
betas=(self.step_opt['beta1'], self.step_opt['beta2']))
self.optimizers = [opt]

View File

@ -89,7 +89,7 @@ if __name__ == "__main__":
want_just_images = True
srg_analyze = False
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/analyze_srg.yml')
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/srgan_compute_feature.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)

View File

@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_corrupt_imgset_rrdb.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_spsr_switched2_fullimgref_gan_no_branch.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)