forked from mrq/DL-Art-School
ExtensibleTrainer work
This commit is contained in:
parent
a498d7b1b3
commit
f40545f235
66
codes/data_scripts/validate_data.py
Normal file
66
codes/data_scripts/validate_data.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
# This script iterates through all the data with no worker threads and performs whatever transformations are prescribed.
|
||||
# The idea is to find bad/corrupt images.
|
||||
|
||||
import math
|
||||
import argparse
|
||||
import random
|
||||
import torch
|
||||
import options.options as option
|
||||
from utils import util
|
||||
from data import create_dataloader, create_dataset
|
||||
from time import time
|
||||
from tqdm import tqdm
|
||||
from skimage import io
|
||||
|
||||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../../options/train_mi1_spsr_switched2.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
|
||||
#### distributed training settings
|
||||
opt['dist'] = False
|
||||
rank = -1
|
||||
|
||||
# convert to NoneDict, which returns None for missing keys
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
|
||||
#### random seed
|
||||
seed = opt['train']['manual_seed']
|
||||
if seed is None:
|
||||
seed = random.randint(1, 10000)
|
||||
util.set_random_seed(seed)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cudnn.deterministic = True
|
||||
|
||||
#### create train and val dataloader
|
||||
for phase, dataset_opt in opt['datasets'].items():
|
||||
if phase == 'train':
|
||||
train_set = create_dataset(dataset_opt)
|
||||
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
|
||||
total_iters = int(opt['train']['niter'])
|
||||
total_epochs = int(math.ceil(total_iters / train_size))
|
||||
dataset_opt['n_workers'] = 0 # Force num_workers=0 to make dataloader work in process.
|
||||
train_loader = create_dataloader(train_set, dataset_opt, opt, None)
|
||||
if rank <= 0:
|
||||
print('Number of train images: {:,d}, iters: {:,d}'.format(
|
||||
len(train_set), train_size))
|
||||
assert train_loader is not None
|
||||
|
||||
tq_ldr = tqdm(train_set.paths_GT)
|
||||
for path in tq_ldr:
|
||||
try:
|
||||
_ = io.imread(path)
|
||||
# Do stuff with img
|
||||
except Exception as e:
|
||||
print("Error with %s" % (path,))
|
||||
print(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -1,22 +1,18 @@
|
|||
import logging
|
||||
from collections import OrderedDict
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
||||
import models.networks as networks
|
||||
from models.steps.steps import create_step
|
||||
import models.lr_scheduler as lr_scheduler
|
||||
from models.base_model import BaseModel
|
||||
from models.loss import GANLoss, FDPLLoss
|
||||
from apex import amp
|
||||
from data.weight_scheduler import get_scheduler_for_opt
|
||||
from .archs.SPSR_arch import ImageGradient, ImageGradientNoPadding
|
||||
import torch.nn.functional as F
|
||||
import glob
|
||||
import random
|
||||
|
||||
import torchvision.utils as utils
|
||||
import os
|
||||
import random
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.utils as utils
|
||||
from apex import amp
|
||||
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
||||
|
||||
import models.lr_scheduler as lr_scheduler
|
||||
import models.networks as networks
|
||||
from models.base_model import BaseModel
|
||||
from models.steps.steps import ConfigurableStep
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
|
@ -31,15 +27,20 @@ class ExtensibleTrainer(BaseModel):
|
|||
train_opt = opt['train']
|
||||
self.mega_batch_factor = 1
|
||||
|
||||
# env is used as a global state to store things that subcomponents might need.
|
||||
env = {'device': self.device,
|
||||
'rank': self.rank,
|
||||
'opt': opt}
|
||||
|
||||
self.netsG = {}
|
||||
self.netsD = {}
|
||||
self.networks = []
|
||||
for name, net in opt['networks'].items():
|
||||
if net['type'] == 'generator':
|
||||
new_net = networks.define_G(net)
|
||||
new_net = networks.define_G(net, None, opt['scale']).to(self.device)
|
||||
self.netsG[name] = new_net
|
||||
elif net['type'] == 'discriminator':
|
||||
new_net = networks.define_D(net)
|
||||
new_net = networks.define_D_net(net, opt['datasets']['train']['target_size']).to(self.device)
|
||||
self.netsD[name] = new_net
|
||||
else:
|
||||
raise NotImplementedError("Can only handle generators and discriminators")
|
||||
|
@ -51,7 +52,7 @@ class ExtensibleTrainer(BaseModel):
|
|||
self.mega_batch_factor = 1
|
||||
|
||||
# Initialize amp.
|
||||
amp_nets, amp_opts = amp.initialize(self.networks, self.optimizers, opt_level=opt['amp_level'], num_losses=len(self.optimizers))
|
||||
amp_nets, amp_opts = amp.initialize(self.networks, self.optimizers, opt_level=opt['amp_opt_level'], num_losses=len(opt['steps']))
|
||||
# self.networks is stored unwrapped. It should never be used for forward() or backward() passes, instead use
|
||||
# self.netG and self.netD for that.
|
||||
self.networks = amp_nets
|
||||
|
@ -76,15 +77,18 @@ class ExtensibleTrainer(BaseModel):
|
|||
for dnet in dnets:
|
||||
for net_dict in [self.netsD, self.netsG]:
|
||||
for k, v in net_dict.items():
|
||||
if v == dnet:
|
||||
if v == dnet.module:
|
||||
net_dict[k] = dnet
|
||||
found += 1
|
||||
assert found == len(self.networks)
|
||||
|
||||
env['generators'] = self.netsG
|
||||
env['discriminators'] = self.netsD
|
||||
|
||||
# Initialize the training steps
|
||||
self.steps = []
|
||||
for step in opt['steps']:
|
||||
step = create_step(step, self.netsG, self.netsD)
|
||||
for step_name, step in opt['steps'].items():
|
||||
step = ConfigurableStep(step, env)
|
||||
self.steps.append(step)
|
||||
self.optimizers.extend(step.get_optimizers())
|
||||
|
||||
|
@ -113,8 +117,8 @@ class ExtensibleTrainer(BaseModel):
|
|||
net.update_for_step(step, os.path.join(self.opt['path']['models'], ".."))
|
||||
|
||||
# Iterate through the steps, performing them one at a time.
|
||||
state = {'lr': self.var_L, 'hr': self.var_H, 'ref': self.var_ref}
|
||||
for s in self.steps:
|
||||
state = {'lq': self.var_L, 'hq': self.var_H, 'ref': self.var_ref}
|
||||
for step_num, s in enumerate(self.steps):
|
||||
# Only set requires_grad=True for the network being trained.
|
||||
nets_to_train = s.get_networks_trained()
|
||||
for name, net in self.networks.items():
|
||||
|
@ -126,8 +130,20 @@ class ExtensibleTrainer(BaseModel):
|
|||
p.requires_grad = False
|
||||
|
||||
# Now do a forward and backward pass for each gradient accumulation step.
|
||||
new_states = {}
|
||||
for m in range(self.mega_batch_factor):
|
||||
state = s.do_forward_backward(state, m)
|
||||
ns = s.do_forward_backward(state, m, step_num)
|
||||
for k, v in ns.items():
|
||||
if k not in new_states.keys():
|
||||
new_states[k] = [v.detach()]
|
||||
else:
|
||||
new_states[k].append(v.detach())
|
||||
|
||||
# Push the detached new state tensors into the state map for use with the next step.
|
||||
for k, v in new_states.items():
|
||||
# Overwriting existing state keys is not supported.
|
||||
assert k not in state.keys()
|
||||
state[k] = v
|
||||
|
||||
# And finally perform optimization.
|
||||
s.do_step()
|
||||
|
|
|
@ -13,6 +13,8 @@ def create_model(opt):
|
|||
from .feature_model import FeatureModel as M
|
||||
elif model == 'spsr':
|
||||
from .SPSR_model import SPSRModel as M
|
||||
elif model == 'extensibletrainer':
|
||||
from .ExtensibleTrainer import ExtensibleTrainer as M
|
||||
else:
|
||||
raise NotImplementedError('Model [{:s}] not recognized.'.format(model))
|
||||
m = M(opt)
|
||||
|
|
|
@ -17,10 +17,14 @@ import functools
|
|||
from collections import OrderedDict
|
||||
|
||||
# Generator
|
||||
def define_G(opt, net_key='network_G'):
|
||||
def define_G(opt, net_key='network_G', scale=None):
|
||||
if net_key is not None:
|
||||
opt_net = opt[net_key]
|
||||
which_model = opt_net['which_model_G']
|
||||
else:
|
||||
opt_net = opt
|
||||
if scale is None:
|
||||
scale = opt['scale']
|
||||
which_model = opt_net['which_model_G']
|
||||
|
||||
# image restoration
|
||||
if which_model == 'MSRResNet':
|
||||
|
|
0
codes/models/steps/__init__.py
Normal file
0
codes/models/steps/__init__.py
Normal file
32
codes/models/steps/injectors.py
Normal file
32
codes/models/steps/injectors.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
import torch.nn
|
||||
from models.archs.SPSR_arch import ImageGradientNoPadding
|
||||
|
||||
# Injectors are a way to sythesize data within a step that can then be used (and reused) by loss functions.
|
||||
def create_injector(opt_inject, env):
|
||||
type = opt_inject['type']
|
||||
if type == 'img_grad':
|
||||
return ImageGradientInjector(opt_inject, env)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Injector(torch.nn.Module):
|
||||
def __init__(self, opt, env):
|
||||
super(self, Injector).__init__()
|
||||
self.opt = opt
|
||||
self.env = env
|
||||
self.input = opt['in']
|
||||
self.output = opt['out']
|
||||
|
||||
# This should return a dict of new state variables.
|
||||
def forward(self, state):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ImageGradientInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super(self, ImageGradientInjector).__init__(opt, env)
|
||||
self.img_grad_fn = ImageGradientNoPadding()
|
||||
|
||||
def forward(self, state):
|
||||
return {self.opt['out']: self.img_grad_fn(state[self.opt['in']])}
|
106
codes/models/steps/losses.py
Normal file
106
codes/models/steps/losses.py
Normal file
|
@ -0,0 +1,106 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from models.networks import define_F
|
||||
from models.loss import GANLoss
|
||||
|
||||
|
||||
def create_generator_loss(opt_loss, env):
|
||||
type = opt_loss['type']
|
||||
if type == 'pix':
|
||||
return PixLoss(opt_loss, env)
|
||||
elif type == 'feature':
|
||||
return FeatureLoss(opt_loss, env)
|
||||
elif type == 'generator_gan':
|
||||
return GeneratorGanLoss(opt_loss, env)
|
||||
elif type == 'discriminator_gan':
|
||||
return DiscriminatorGanLoss(opt_loss, env)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ConfigurableLoss(nn.Module):
|
||||
def __init__(self, opt, env):
|
||||
super(self, ConfigurableLoss).__init__()
|
||||
self.opt = opt
|
||||
self.env = env
|
||||
|
||||
def forward(self, net, state):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def get_basic_criterion_for_name(name, device):
|
||||
if name == 'l1':
|
||||
return nn.L1Loss(device=device)
|
||||
elif name == 'l2':
|
||||
return nn.MSELoss(device=device)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class PixLoss(ConfigurableLoss):
|
||||
def __init__(self, opt, env):
|
||||
super(self, PixLoss).__init__(opt, env)
|
||||
self.opt = opt
|
||||
self.criterion = get_basic_criterion_for_name(opt['criterion'], env['device'])
|
||||
|
||||
def forward(self, net, state):
|
||||
return self.criterion(state[self.opt['fake']], state[self.opt['real']])
|
||||
|
||||
|
||||
class FeatureLoss(ConfigurableLoss):
|
||||
def __init__(self, opt, env):
|
||||
super(self, FeatureLoss).__init__(opt, env)
|
||||
self.opt = opt
|
||||
self.criterion = get_basic_criterion_for_name(opt['criterion'], env['device'])
|
||||
self.netF = define_F(opt).to(self.env['device'])
|
||||
|
||||
def forward(self, net, state):
|
||||
with torch.no_grad():
|
||||
logits_real = self.netF(state[self.opt['real']])
|
||||
logits_fake = self.netF(state[self.opt['fake']])
|
||||
return self.criterion(logits_fake, logits_real)
|
||||
|
||||
|
||||
class GeneratorGanLoss(ConfigurableLoss):
|
||||
def __init__(self, opt, env):
|
||||
super(self, GeneratorGanLoss).__init__(opt, env)
|
||||
self.opt = opt
|
||||
self.criterion = GANLoss(opt['gan_type'], 1.0, 0.0).to(env['device'])
|
||||
self.netD = env['discriminators'][opt['discriminator']]
|
||||
|
||||
def forward(self, net, state):
|
||||
if self.opt['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
||||
if self.opt['gan_type'] == 'crossgan':
|
||||
pred_g_fake = self.netD(state[self.opt['fake']], state['lq'])
|
||||
else:
|
||||
pred_g_fake = self.netD(state[self.opt['fake']])
|
||||
return self.criterion(pred_g_fake, True)
|
||||
elif self.opt['gan_type'] == 'ragan':
|
||||
pred_d_real = self.netD(state[self.opt['real']]).detach()
|
||||
pred_g_fake = self.netD(state[self.opt['fake']])
|
||||
return (self.cri_gan(pred_d_real - torch.mean(pred_g_fake), False) +
|
||||
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), True)) / 2
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class DiscriminatorGanLoss(ConfigurableLoss):
|
||||
def __init__(self, opt, env):
|
||||
super(self, DiscriminatorGanLoss).__init__(opt, env)
|
||||
self.opt = opt
|
||||
self.criterion = GANLoss(opt['gan_type'], 1.0, 0.0).to(env['device'])
|
||||
|
||||
def forward(self, net, state):
|
||||
if self.opt['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
||||
if self.opt['gan_type'] == 'crossgan':
|
||||
pred_g_fake = net(state[self.opt['fake']].detach(), state['lq'])
|
||||
else:
|
||||
pred_g_fake = net(state[self.opt['fake']].detach())
|
||||
return self.criterion(pred_g_fake, False)
|
||||
elif self.opt['gan_type'] == 'ragan':
|
||||
pred_d_real = self.netD(state[self.opt['real']])
|
||||
pred_g_fake = self.netD(state[self.opt['fake']].detach())
|
||||
return (self.cri_gan(pred_d_real - torch.mean(pred_g_fake), True) +
|
||||
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), False)) / 2
|
||||
else:
|
||||
raise NotImplementedError
|
|
@ -1,9 +0,0 @@
|
|||
def create_generator_loss(opt_loss):
|
||||
pass
|
||||
|
||||
|
||||
class GeneratorLoss:
|
||||
def __init__(self, opt):
|
||||
self.opt = opt
|
||||
|
||||
def get_loss(self, var_L, var_H, var_Gen, extras=None):
|
|
@ -1,46 +0,0 @@
|
|||
# Defines the expected API for a step
|
||||
class SrGanGeneratorStep:
|
||||
|
||||
def __init__(self, opt_step, opt, netsG, netsD):
|
||||
self.step_opt = opt_step
|
||||
self.opt = opt
|
||||
self.gen = netsG['base']
|
||||
self.disc = netsD['base']
|
||||
for loss in self.step_opt['losses']:
|
||||
|
||||
# G pixel loss
|
||||
if train_opt['pixel_weight'] > 0:
|
||||
l_pix_type = train_opt['pixel_criterion']
|
||||
if l_pix_type == 'l1':
|
||||
self.cri_pix = nn.L1Loss().to(self.device)
|
||||
elif l_pix_type == 'l2':
|
||||
self.cri_pix = nn.MSELoss().to(self.device)
|
||||
else:
|
||||
raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
|
||||
self.l_pix_w = train_opt['pixel_weight']
|
||||
else:
|
||||
logger.info('Remove pixel loss.')
|
||||
self.cri_pix = None
|
||||
|
||||
|
||||
# Returns all optimizers used in this step.
|
||||
def get_optimizers(self):
|
||||
pass
|
||||
|
||||
# Returns optimizers which are opting in for default LR scheduling.
|
||||
def get_optimizers_with_default_scheduler(self):
|
||||
pass
|
||||
|
||||
# Returns the names of the networks this step will train. Other networks will be frozen.
|
||||
def get_networks_trained(self):
|
||||
pass
|
||||
|
||||
# Performs all forward and backward passes for this step given an input state. All input states are lists or
|
||||
# chunked tensors. Use grad_accum_step to derefernce these steps. Return the state with any variables the step
|
||||
# exports (which may be used by subsequent steps)
|
||||
def do_forward_backward(self, state, grad_accum_step):
|
||||
return state
|
||||
|
||||
# Performs the optimizer step after all gradient accumulation is completed.
|
||||
def do_step(self):
|
||||
pass
|
|
@ -1,29 +1,117 @@
|
|||
from utils.loss_accumulator import LossAccumulator
|
||||
from torch.nn import Module
|
||||
import logging
|
||||
from models.steps.losses import create_generator_loss
|
||||
import torch
|
||||
from apex import amp
|
||||
from collections import OrderedDict
|
||||
from .injectors import create_injector
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
|
||||
def create_step(opt, opt_step, netsG, netsD):
|
||||
pass
|
||||
# Defines the expected API for a single training step
|
||||
class ConfigurableStep(Module):
|
||||
|
||||
def __init__(self, opt_step, env):
|
||||
super(ConfigurableStep, self).__init__()
|
||||
|
||||
self.step_opt = opt_step
|
||||
self.env = env
|
||||
self.opt = env['opt']
|
||||
self.gen = env['generators'][opt_step['generator']]
|
||||
self.discs = env['discriminators']
|
||||
self.gen_outputs = opt_step['generator_outputs']
|
||||
self.training_net = env['generators'][opt_step['training']] if opt_step['training'] in env['generators'].keys() else env['discriminators'][opt_step['training']]
|
||||
self.loss_accumulator = LossAccumulator()
|
||||
|
||||
self.injectors = []
|
||||
if 'injectors' in self.step_opt.keys():
|
||||
for inj_name, injector in self.step_opt['injectors'].items():
|
||||
self.injectors.append(create_injector(injector, env))
|
||||
|
||||
losses = []
|
||||
self.weights = {}
|
||||
for loss_name, loss in self.step_opt['losses'].items():
|
||||
losses.append((loss_name, create_generator_loss(loss, env)))
|
||||
self.weights[loss_name] = loss['weight']
|
||||
self.losses = OrderedDict(losses)
|
||||
|
||||
# Intentionally abstract so subclasses can have alternative optimizers.
|
||||
self.define_optimizers()
|
||||
|
||||
# Subclasses should override this to define individual optimizers. They should all go into self.optimizers.
|
||||
# This default implementation defines a single optimizer for all Generator parameters.
|
||||
def define_optimizers(self):
|
||||
optim_params = []
|
||||
for k, v in self.training_net.named_parameters(): # can optimize for a part of the model
|
||||
if v.requires_grad:
|
||||
optim_params.append(v)
|
||||
else:
|
||||
if self.env['rank'] <= 0:
|
||||
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
||||
opt = torch.optim.Adam(optim_params, lr=self.step_opt['lr'],
|
||||
weight_decay=self.step_opt['weight_decay'],
|
||||
betas=(self.step_opt['beta1'], self.step_opt['beta2']))
|
||||
self.optimizers = [opt]
|
||||
|
||||
# Defines the expected API for a step
|
||||
class base_step:
|
||||
# Returns all optimizers used in this step.
|
||||
def get_optimizers(self):
|
||||
pass
|
||||
assert self.optimizers is not None
|
||||
return self.optimizers
|
||||
|
||||
# Returns optimizers which are opting in for default LR scheduling.
|
||||
def get_optimizers_with_default_scheduler(self):
|
||||
pass
|
||||
assert self.optimizers is not None
|
||||
return self.optimizers
|
||||
|
||||
# Returns the names of the networks this step will train. Other networks will be frozen.
|
||||
def get_networks_trained(self):
|
||||
pass
|
||||
return [self.step_opt['training']]
|
||||
|
||||
# Performs all forward and backward passes for this step given an input state. All input states are lists or
|
||||
# chunked tensors. Use grad_accum_step to derefernce these steps. Return the state with any variables the step
|
||||
# exports (which may be used by subsequent steps)
|
||||
def do_forward_backward(self, state, grad_accum_step):
|
||||
return state
|
||||
# Performs all forward and backward passes for this step given an input state. All input states are lists of
|
||||
# chunked tensors. Use grad_accum_step to dereference these steps. Should return a dict of tensors that later
|
||||
# steps might use. These tensors are automatically detached and accumulated into chunks.
|
||||
def do_forward_backward(self, state, grad_accum_step, amp_loss_id):
|
||||
# First, do a forward pass with the generator.
|
||||
results = self.gen(state[self.step_opt['generator_input']][grad_accum_step])
|
||||
# Extract the resultants into a "new_state" dict per the configuration.
|
||||
new_state = {}
|
||||
for i, gen_out in enumerate(self.gen_outputs):
|
||||
new_state[gen_out] = results[i]
|
||||
|
||||
# Performs the optimizer step after all gradient accumulation is completed.
|
||||
# Prepare a de-chunked state dict which will be used for the injectors & losses.
|
||||
local_state = {}
|
||||
for k, v in state.items():
|
||||
local_state[k] = v[grad_accum_step]
|
||||
local_state.update(new_state)
|
||||
|
||||
# Inject in any extra dependencies.
|
||||
for inj in self.injectors:
|
||||
injected = inj(local_state)
|
||||
local_state.update(injected)
|
||||
new_state.update(injected)
|
||||
|
||||
# Finally, compute the losses.
|
||||
total_loss = 0
|
||||
for loss_name, loss in self.losses.items():
|
||||
l = loss(self.training_net, local_state)
|
||||
self.loss_accumulator.add_loss(loss_name, l)
|
||||
total_loss += l * self.weights[loss_name]
|
||||
self.loss_accumulator.add_loss("total", total_loss)
|
||||
|
||||
# Get dem grads!
|
||||
with amp.scale_loss(total_loss, self.optimizers, amp_loss_id) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
|
||||
return new_state
|
||||
|
||||
|
||||
# Performs the optimizer step after all gradient accumulation is completed. Default implementation simply steps()
|
||||
# all self.optimizers.
|
||||
def do_step(self):
|
||||
pass
|
||||
for opt in self.optimizers:
|
||||
opt.step()
|
||||
|
||||
def get_metrics(self):
|
||||
return self.loss_accumulator.as_dict()
|
289
codes/train2.py
Normal file
289
codes/train2.py
Normal file
|
@ -0,0 +1,289 @@
|
|||
import os
|
||||
import math
|
||||
import argparse
|
||||
import random
|
||||
import logging
|
||||
import shutil
|
||||
from tqdm import tqdm
|
||||
|
||||
import torch
|
||||
from data.data_sampler import DistIterSampler
|
||||
|
||||
import options.options as option
|
||||
from utils import util
|
||||
from data import create_dataloader, create_dataset
|
||||
from models import create_model
|
||||
from time import time
|
||||
|
||||
|
||||
def init_dist(backend='nccl', **kwargs):
|
||||
# These packages have globals that screw with Windows, so only import them if needed.
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
"""initialization for distributed training"""
|
||||
if mp.get_start_method(allow_none=True) != 'spawn':
|
||||
mp.set_start_method('spawn')
|
||||
rank = int(os.environ['RANK'])
|
||||
num_gpus = torch.cuda.device_count()
|
||||
torch.cuda.set_device(rank % num_gpus)
|
||||
dist.init_process_group(backend=backend, **kwargs)
|
||||
|
||||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_mi1_nt_spsr_switched.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
|
||||
colab_mode = False if 'colab_mode' not in opt.keys() else opt['colab_mode']
|
||||
if colab_mode:
|
||||
# Check the configuration of the remote server. Expect models, resume_state, and val_images directories to be there.
|
||||
# Each one should have a TEST file in it.
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'training_state', "TEST"))
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'models', "TEST"))
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'val_images', "TEST"))
|
||||
# Load the state and models needed from the remote server.
|
||||
if opt['path']['resume_state']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'training_state', opt['path']['resume_state']))
|
||||
if opt['path']['pretrain_model_G']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'models', opt['path']['pretrain_model_G']))
|
||||
if opt['path']['pretrain_model_D']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'models', opt['path']['pretrain_model_D']))
|
||||
|
||||
#### distributed training settings
|
||||
if args.launcher == 'none': # disabled distributed training
|
||||
opt['dist'] = False
|
||||
rank = -1
|
||||
print('Disabled distributed training.')
|
||||
else:
|
||||
opt['dist'] = True
|
||||
init_dist()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
rank = torch.distributed.get_rank()
|
||||
|
||||
#### loading resume state if exists
|
||||
if opt['path'].get('resume_state', None):
|
||||
# distributed resuming: all load into default GPU
|
||||
device_id = torch.cuda.current_device()
|
||||
resume_state = torch.load(opt['path']['resume_state'],
|
||||
map_location=lambda storage, loc: storage.cuda(device_id))
|
||||
option.check_resume(opt, resume_state['iter']) # check resume options
|
||||
else:
|
||||
resume_state = None
|
||||
|
||||
#### mkdir and loggers
|
||||
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
|
||||
if resume_state is None:
|
||||
util.mkdir_and_rename(
|
||||
opt['path']['experiments_root']) # rename experiment folder if exists
|
||||
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
|
||||
and 'pretrain_model' not in key and 'resume' not in key))
|
||||
|
||||
# config loggers. Before it, the log will not work
|
||||
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
|
||||
screen=True, tofile=True)
|
||||
logger = logging.getLogger('base')
|
||||
logger.info(option.dict2str(opt))
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
|
||||
version = float(torch.__version__[0:3])
|
||||
if version >= 1.1: # PyTorch 1.1
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
else:
|
||||
logger.info(
|
||||
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
|
||||
from tensorboardX import SummaryWriter
|
||||
tb_logger = SummaryWriter(log_dir=tb_logger_path)
|
||||
else:
|
||||
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
# convert to NoneDict, which returns None for missing keys
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
|
||||
#### random seed
|
||||
seed = opt['train']['manual_seed']
|
||||
if seed is None:
|
||||
seed = random.randint(1, 10000)
|
||||
if rank <= 0:
|
||||
logger.info('Random seed: {}'.format(seed))
|
||||
util.set_random_seed(seed)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cudnn.deterministic = True
|
||||
|
||||
#### create train and val dataloader
|
||||
dataset_ratio = 200 # enlarge the size of each epoch
|
||||
for phase, dataset_opt in opt['datasets'].items():
|
||||
if phase == 'train':
|
||||
train_set = create_dataset(dataset_opt)
|
||||
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
|
||||
total_iters = int(opt['train']['niter'])
|
||||
total_epochs = int(math.ceil(total_iters / train_size))
|
||||
if opt['dist']:
|
||||
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
|
||||
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
|
||||
else:
|
||||
train_sampler = None
|
||||
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
|
||||
if rank <= 0:
|
||||
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
|
||||
len(train_set), train_size))
|
||||
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
|
||||
total_epochs, total_iters))
|
||||
elif phase == 'val':
|
||||
val_set = create_dataset(dataset_opt)
|
||||
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
|
||||
if rank <= 0:
|
||||
logger.info('Number of val images in [{:s}]: {:d}'.format(
|
||||
dataset_opt['name'], len(val_set)))
|
||||
else:
|
||||
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
|
||||
assert train_loader is not None
|
||||
|
||||
#### create model
|
||||
model = create_model(opt)
|
||||
|
||||
#### resume training
|
||||
if resume_state:
|
||||
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
|
||||
resume_state['epoch'], resume_state['iter']))
|
||||
|
||||
start_epoch = resume_state['epoch']
|
||||
current_step = resume_state['iter']
|
||||
model.resume_training(resume_state) # handle optimizers and schedulers
|
||||
else:
|
||||
current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
|
||||
start_epoch = 0
|
||||
|
||||
#### training
|
||||
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
|
||||
for epoch in range(start_epoch, total_epochs + 1):
|
||||
if opt['dist']:
|
||||
train_sampler.set_epoch(epoch)
|
||||
tq_ldr = tqdm(train_loader)
|
||||
|
||||
_t = time()
|
||||
_profile = False
|
||||
for _, train_data in enumerate(tq_ldr):
|
||||
if _profile:
|
||||
print("Data fetch: %f" % (time() - _t))
|
||||
_t = time()
|
||||
|
||||
current_step += 1
|
||||
if current_step > total_iters:
|
||||
break
|
||||
#### update learning rate
|
||||
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
|
||||
|
||||
#### training
|
||||
if _profile:
|
||||
print("Update LR: %f" % (time() - _t))
|
||||
_t = time()
|
||||
model.feed_data(train_data)
|
||||
model.optimize_parameters(current_step)
|
||||
if _profile:
|
||||
print("Model feed + step: %f" % (time() - _t))
|
||||
_t = time()
|
||||
|
||||
#### log
|
||||
if current_step % opt['logger']['print_freq'] == 0:
|
||||
logs = model.get_current_log(current_step)
|
||||
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
|
||||
for v in model.get_current_learning_rate():
|
||||
message += '{:.3e},'.format(v)
|
||||
message += ')] '
|
||||
for k, v in logs.items():
|
||||
if 'histogram' in k:
|
||||
if rank <= 0:
|
||||
tb_logger.add_histogram(k, v, current_step)
|
||||
else:
|
||||
message += '{:s}: {:.4e} '.format(k, v)
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
if rank <= 0:
|
||||
tb_logger.add_scalar(k, v, current_step)
|
||||
if rank <= 0:
|
||||
logger.info(message)
|
||||
#### validation
|
||||
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
|
||||
if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan'] and rank <= 0: # image restoration validation
|
||||
model.force_restore_swapout()
|
||||
val_batch_sz = 1 if 'batch_size' not in opt['datasets']['val'].keys() else opt['datasets']['val']['batch_size']
|
||||
# does not support multi-GPU validation
|
||||
pbar = util.ProgressBar(len(val_loader) * val_batch_sz)
|
||||
avg_psnr = 0.
|
||||
avg_fea_loss = 0.
|
||||
idx = 0
|
||||
colab_imgs_to_copy = []
|
||||
for val_data in val_loader:
|
||||
idx += 1
|
||||
for b in range(len(val_data['LQ_path'])):
|
||||
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
|
||||
img_dir = os.path.join(opt['path']['val_images'], img_name)
|
||||
util.mkdir(img_dir)
|
||||
|
||||
model.feed_data(val_data)
|
||||
model.test()
|
||||
|
||||
visuals = model.get_current_visuals()
|
||||
if visuals is None:
|
||||
continue
|
||||
|
||||
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
|
||||
#gt_img = util.tensor2img(visuals['GT'][b]) # uint8
|
||||
|
||||
# Save SR images for reference
|
||||
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
|
||||
save_img_path = os.path.join(img_dir, img_base_name)
|
||||
util.save_img(sr_img, save_img_path)
|
||||
if colab_mode:
|
||||
colab_imgs_to_copy.append(save_img_path)
|
||||
|
||||
# calculate PSNR (Naw - don't do that. PSNR sucks)
|
||||
#sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
|
||||
#avg_psnr += util.calculate_psnr(sr_img, gt_img)
|
||||
#pbar.update('Test {}'.format(img_name))
|
||||
|
||||
# calculate fea loss
|
||||
avg_fea_loss += model.compute_fea_loss(visuals['rlt'][b], visuals['GT'][b])
|
||||
|
||||
if colab_mode:
|
||||
util.copy_files_to_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
colab_imgs_to_copy,
|
||||
os.path.join(opt['remote_path'], 'val_images', img_base_name))
|
||||
|
||||
avg_psnr = avg_psnr / idx
|
||||
avg_fea_loss = avg_fea_loss / idx
|
||||
|
||||
# log
|
||||
logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
#tb_logger.add_scalar('val_psnr', avg_psnr, current_step)
|
||||
tb_logger.add_scalar('val_fea', avg_fea_loss, current_step)
|
||||
|
||||
#### save models and training states
|
||||
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
|
||||
if rank <= 0:
|
||||
logger.info('Saving models and training states.')
|
||||
model.save(current_step)
|
||||
model.save_training_state(epoch, current_step)
|
||||
|
||||
if rank <= 0:
|
||||
logger.info('Saving the final model.')
|
||||
model.save('latest')
|
||||
logger.info('End of training.')
|
||||
tb_logger.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
20
codes/utils/loss_accumulator.py
Normal file
20
codes/utils/loss_accumulator.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
import torch
|
||||
|
||||
# Utility class that stores detached, named losses in a rotating buffer for smooth metric outputting.
|
||||
class LossAccumulator:
|
||||
def __init__(self, buffer_sz=10):
|
||||
self.buffer_sz = buffer_sz
|
||||
self.buffers = {}
|
||||
|
||||
def add_loss(self, name, tensor):
|
||||
if name not in self.buffers.keys():
|
||||
self.buffers[name] = (0, torch.zeros(self.buffer_sz))
|
||||
i, buf = self.buffers[name]
|
||||
buf[i] = tensor.detach().cpu()
|
||||
self.buffers[name] = ((i+1) % self.buffer_sz, buf)
|
||||
|
||||
def as_dict(self):
|
||||
result = {}
|
||||
for k, v in self.buffers:
|
||||
result["loss_" + k] = torch.mean(v)
|
||||
return result
|
Loading…
Reference in New Issue
Block a user