Partially implement performers in transformer_builders

This commit is contained in:
James Betker 2022-01-09 22:35:03 -07:00
parent ec456b6733
commit f503d8d96b

View File

@ -12,7 +12,9 @@ Every function contains the following arguments:
checkpointing: Whether or not the underlying implementation should support gradient checkpointing.
"""
import functools
from time import time
import torch
from tqdm import tqdm
def null_position_embeddings(range, dim):
@ -36,6 +38,8 @@ def build_hf_gpt_transformer(layers, model_dim, heads, num_tokens, max_seq_len,
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt
@ -43,7 +47,10 @@ def build_lr_performer(layers, model_dim, heads, num_tokens, max_seq_len, checkp
"""
lucidrains Performer implementation, https://github.com/lucidrains/performer-pytorch
"""
pass
from models.lucidrains.performer.performer_pytorch import PerformerLM
model = PerformerLM(dim=model_dim, depth=layers, heads=heads, dim_head=model_dim, causal=True,
num_tokens=num_tokens, max_seq_len=max_seq_len)
return model
def build_lr_reformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
@ -61,10 +68,19 @@ def build_lr_xformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpoi
def test_all_performance(**kwargs):
transformer_builders = [build_hf_gpt_transformer, build_lr_performer, build_lr_reformer, build_lr_xformer]
transformer_builders = [#build_hf_gpt_transformer,
build_lr_performer,]
# build_lr_reformer,
# build_lr_xformer]
for builder in transformer_builders:
model = builder(**kwargs)
start = time()
args = torch.randint(0, 8192, (16,450))
for k in tqdm(range(10)):
model(args)
stop = time()
print(f"Model: {str(builder)}; Elapsed: {stop-start}")
if __name__ == '__main__':
test_all_performance(12, 512, 8, 8192, 1000, False)
test_all_performance(layers=12, model_dim=512, heads=8, num_tokens=8192, max_seq_len=1000, checkpointing=False)