diff --git a/codes/models/vqvae/vqvae.py b/codes/models/vqvae/vqvae.py index 95b34331..103d8d8b 100644 --- a/codes/models/vqvae/vqvae.py +++ b/codes/models/vqvae/vqvae.py @@ -48,7 +48,7 @@ class Quantize(nn.Module): self.register_buffer("embed_avg", embed.clone()) def forward(self, input): - if self.codes_full: + if self.balancing_heuristic and self.codes_full: h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes) mask = torch.logical_or(h > .9, h < .01).unsqueeze(1) ep = self.embed.permute(1,0) @@ -73,13 +73,14 @@ class Quantize(nn.Module): embed_ind = embed_ind.view(*input.shape[:-1]) quantize = self.embed_code(embed_ind) - if self.codes is None: - self.codes = embed_ind.flatten() - else: - self.codes = torch.cat([self.codes, embed_ind.flatten()]) - if len(self.codes) > self.max_codes: - self.codes = self.codes[-self.max_codes:] - self.codes_full = True + if self.balancing_heuristic: + if self.codes is None: + self.codes = embed_ind.flatten() + else: + self.codes = torch.cat([self.codes, embed_ind.flatten()]) + if len(self.codes) > self.max_codes: + self.codes = self.codes[-self.max_codes:] + self.codes_full = True if self.training: embed_onehot_sum = embed_onehot.sum(0)