import argparse import os import random import torch import torchaudio import yaml from data.audio.unsupervised_audio_dataset import load_audio from data.util import is_audio_file, find_files_of_type from models.tacotron2.text import text_to_sequence from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \ load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes from trainer.injectors.base_injectors import MelSpectrogramInjector from utils.audio import plot_spectrogram from utils.options import Loader from utils.util import load_model_from_config import torch.nn.functional as F def do_vocoding(dvae, vocoder, diffuser, codes, cond=None, plot_spec=False): return def load_conditioning_candidates(path, num_conds, sample_rate=22050, cond_length=44100): candidates = find_files_of_type('img', path, qualifier=is_audio_file)[0] # Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates. related_mels = [] for k in range(num_conds): rel_clip = load_audio(candidates[k], sample_rate) gap = rel_clip.shape[-1] - cond_length if gap < 0: rel_clip = F.pad(rel_clip, pad=(0, abs(gap))) elif gap > 0: rand_start = random.randint(0, gap) rel_clip = rel_clip[:, rand_start:rand_start + cond_length] mel_clip = MelSpectrogramInjector({'in': 'wav', 'out': 'mel'},{})({'wav': rel_clip.unsqueeze(0)})['mel'].squeeze(0) related_mels.append(mel_clip) return torch.stack(related_mels, dim=0) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-opt_diffuse', type=str, help='Path to options YAML file used to train the diffusion model', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae.yml') parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator') parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth') parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae') parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_tts.yml') parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt') parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_tts\\models\\22000_gpt.pth') parser.add_argument('-text', type=str, help='Text to speak.', default="I'm a language model that has learned to speak.") parser.add_argument('-cond_path', type=str, help='Folder containing conditioning samples.', default='Z:\\clips\\books1\\3042_18_Holden__000000000') parser.add_argument('-num_cond', type=int, help='Number of conditioning samples to load.', default=3) args = parser.parse_args() print("Loading GPT TTS..") with open(args.opt_gpt_tts, mode='r') as f: gpt_opt = yaml.load(f, Loader=Loader) gpt_opt['networks'][args.gpt_tts_model_name]['kwargs']['checkpointing'] = False # Required for beam search gpt = load_model_from_config(preloaded_options=gpt_opt, model_name=args.gpt_tts_model_name, also_load_savepoint=False, load_path=args.gpt_tts_model_path) print("Loading data..") text = torch.IntTensor(text_to_sequence(args.text, ['english_cleaners'])).unsqueeze(0).cuda() conds = load_conditioning_candidates(args.cond_path, args.num_cond).unsqueeze(0).cuda() print("Performing GPT inference..") codes = gpt.inference(text, conds, num_beams=4) #TODO: check the text length during training and match that during inference. # Delete the GPT TTS model to free up GPU memory del gpt print("Loading DVAE..") dvae = load_model_from_config(args.opt_diffuse, args.dvae_model_name) print("Loading Diffusion Model..") diffusion = load_model_from_config(args.opt_diffuse, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path) diffuser = load_discrete_vocoder_diffuser() print("Performing vocoding..") wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, codes, conds[:, 0], spectrogram_compression_factor=128, plt_spec=True) torchaudio.save('gpt_tts_output.wav', wav.squeeze(0), 10025)