import functools import math import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from entmax import entmax15 from x_transformers.autoregressive_wrapper import AutoregressiveWrapper # constants from utils.util import checkpoint DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple('Intermediates', [ 'pre_softmax_attn', 'post_softmax_attn' ]) LayerIntermediates = namedtuple('Intermediates', [ 'hiddens', 'attn_intermediates' ]) # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t): return F.normalize(t, p = 2, dim = -1) # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.scale = dim ** -0.5 self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): n = torch.arange(x.shape[1], device = x.device) pos_emb = self.emb(n) pos_emb = rearrange(pos_emb, 'n d -> () n d') return pos_emb * self.scale class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim = 1, offset = 0): t = torch.arange(x.shape[seq_dim], device = x.device).type_as(self.inv_freq) + offset sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return rearrange(emb, 'n d -> () n d') class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, qk_dots): i, j, device = *qk_dots.shape[-2:], qk_dots.device q_pos = torch.arange(i, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> () h i j') return qk_dots + (bias * self.scale) class AlibiPositionalBias(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> () h () ()') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device if exists(self.bias) and self.bias.shape[-1] >= j: return qk_dots + self.bias[..., :j] bias = torch.arange(j, device = device) bias = rearrange(bias, 'j -> () () () j') bias = bias * self.slopes num_heads_unalibied = h - bias.shape[1] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer('bias', bias, persistent = False) return qk_dots + self.bias class LearnedAlibiPositionalBias(AlibiPositionalBias): def __init__(self, heads, bidirectional = False): super().__init__(heads) los_slopes = torch.log(self.slopes) self.learned_logslopes = nn.Parameter(los_slopes) self.bidirectional = bidirectional if self.bidirectional: self.learned_logslopes_future = nn.Parameter(los_slopes) def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device def get_slopes(param): return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1])) if exists(self.bias) and self.bias.shape[-1] >= j: bias = self.bias[..., :i, :j] else: i_arange = torch.arange(i, device = device) j_arange = torch.arange(j, device = device) bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1') self.register_buffer('bias', bias, persistent = False) if self.bidirectional: past_slopes = get_slopes(self.learned_logslopes) future_slopes = get_slopes(self.learned_logslopes_future) bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes) else: slopes = get_slopes(self.learned_logslopes) bias = bias * slopes return qk_dots + bias class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, max_seq_len, device): t = torch.arange(max_seq_len, device = device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) return rearrange(emb, 'n d -> () () n d') def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs): seq_len = t.shape[-2] freqs = freqs[:, :, -seq_len:] return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x, **kwargs): out = self.fn(x, **kwargs) rezero_fn = lambda t: t * self.g if not isinstance(out, tuple): return rezero_fn(out) return (rezero_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual = False): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask = None): if amount == 0: return t if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return F.pad(t, (0, 0, amount, -amount), value = 0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__(self, dim_in, dim_out, activation): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, relu_squared = False, post_act_ln = False, dropout = 0., zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) activation = ReluSquared() if relu_squared else nn.GELU() project_in = nn.Sequential( nn.Linear(dim, inner_dim), activation ) if not glu else GLU(dim, inner_dim, activation) self.net = nn.Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.net[-1]) def forward(self, x): return self.net(x) # attention. class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, heads = 8, causal = False, talking_heads = False, head_scale = False, collab_heads = False, collab_compression = .3, sparse_topk = None, use_entmax15 = False, num_mem_kv = 0, dropout = 0., on_attn = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, scale_init_value = None, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past qk_dim = v_dim = dim_head * heads # collaborative heads self.collab_heads = collab_heads if self.collab_heads: qk_dim = int(collab_compression * qk_dim) self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) self.to_q = nn.Linear(dim, qk_dim, bias = False) self.to_k = nn.Linear(dim, qk_dim, bias = False) self.to_v = nn.Linear(dim, v_dim, bias = False) self.dropout = nn.Dropout(dropout) # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, v_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm if qk_norm: scale_init_value = default(scale_init_value, -3) # if not provided, initialize as though it were sequence length of 1024 self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value) # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # entmax self.attn_fn = entmax15 if use_entmax15 else F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim) self.rel_pos_bias = rel_pos_bias if rel_pos_bias: assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, sinusoidal_emb = None, rotary_pos_emb = None, prev_attn = None, mem = None ): b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input if exists(mem): k_input = torch.cat((mem, k_input), dim = -2) v_input = torch.cat((mem, v_input), dim = -2) if exists(sinusoidal_emb): # in shortformer, the query would start at a position offset depending on the past cached memory offset = k_input.shape[-2] - q_input.shape[-2] q_input = q_input + sinusoidal_emb(q_input, offset = offset) k_input = k_input + sinusoidal_emb(k_input) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if not collab_heads: q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) else: q = einsum('b i d, h d -> b h i d', q, self.collab_mixing) k = rearrange(k, 'b n d -> b () n d') v = rearrange(v, 'b n (h d) -> b h n d', h = h) if exists(rotary_pos_emb) and not has_context: l = rotary_pos_emb.shape[-1] (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl)) q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = None if any(map(exists, (mask, context_mask))): q_mask = default(mask, lambda: torch.ones((b, n), device = device).bool()) k_mask = q_mask if not exists(context) else context_mask k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device = device).bool()) q_mask = rearrange(q_mask, 'b i -> b () i ()') k_mask = rearrange(k_mask, 'b j -> b () () j') input_mask = q_mask * k_mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value = True) if collab_heads: k = k.expand(-1, h, -1, -1) if self.qk_norm: q, k = map(l2norm, (q, k)) scale = 1 / (self.scale.exp().clamp(min = 1e-2)) dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale mask_value = max_neg_value(dots) if exists(prev_attn): dots = dots + prev_attn pre_softmax_attn = dots.clone() if talking_heads: dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() if self.rel_pos_bias: dots = self.rel_pos(dots) if exists(input_mask): dots.masked_fill_(~input_mask, mask_value) del input_mask if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> () () i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> () h i j') dots.masked_fill_(~attn_mask, mask_value) if exists(self.max_attend_past): i, j = dots.shape[-2:] range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j') mask = dist > self.max_attend_past dots.masked_fill_(mask, mask_value) del mask if self.causal: i, j = dots.shape[-2:] r = torch.arange(i, device = device) mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') mask = F.pad(mask, (j - i, 0), value = False) dots.masked_fill_(mask, mask_value) del mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim = -1) vk = top[..., -1].unsqueeze(-1).expand_as(dots) mask = dots < vk dots.masked_fill_(mask, mask_value) del mask attn = self.attn_fn(dots, dim = -1) post_softmax_attn = attn.clone() attn = self.dropout(attn) if talking_heads: attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() out = einsum('b h i j, b h j d -> b h i d', attn, v) if head_scale: out = out * self.head_scale_params out = rearrange(out, 'b h n d -> b n (h d)') if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() intermediates = Intermediates( pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) return self.to_out(out), intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, use_rezero = False, alibi_pos_bias = False, alibi_num_heads = None, alibi_learned = False, position_infused_attn = False, rotary_pos_emb = False, rotary_emb_dim = None, custom_layers = None, sandwich_coef = None, par_ratio = None, residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, gate_residual = False, scale_residual = False, shift_tokens = 0, sandwich_norm = False, use_qk_norm_attn = False, qk_norm_attn_seq_len = None, zero_init_branch_output = False, **kwargs ): super().__init__() ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) rel_pos_bias = 'rel_pos_bias' in attn_kwargs self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' if alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias self.rel_pos = alibi_pos_klass(heads = alibi_num_heads, bidirectional = not causal) else: self.rel_pos = None assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn self.cross_attend = cross_attend norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_fn = partial(norm_class, dim) norm_fn = nn.Identity if use_rezero else norm_fn branch_fn = Rezero if use_rezero else None if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # qk normalization if use_qk_norm_attn: attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists(qk_norm_attn_seq_len) else None attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value} # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) if exists(branch_fn): layer = branch_fn(layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual = scale_residual) layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c') pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, mems = None, return_hiddens = False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): if layer_type == 'a': hiddens.append(x) layer_mem = mems.pop(0) if mems else None residual = x pre_branch_norm, post_branch_norm, post_main_norm = norm if exists(pre_branch_norm): x = pre_branch_norm(x) if layer_type == 'a': out, inter = checkpoint(block, x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb, prev_attn, layer_mem) elif layer_type == 'c': out, inter = checkpoint(block, x, context, mask, context_mask, None, None, None, prev_attn) elif layer_type == 'f': out = checkpoint(block, x) if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, residual) if layer_type in ('a', 'c'): intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens = hiddens, attn_intermediates = intermediates ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, num_classes = None, dropout = 0., emb_dropout = 0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.patch_to_embedding = nn.Linear(patch_dim, dim) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.mlp_head = FeedForward(dim, dim_out = num_classes, dropout = dropout) if exists(num_classes) else None def forward( self, img, return_embeddings = False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.attn_layers(x) x = self.norm(x) if not exists(self.mlp_head) or return_embeddings: return x return self.mlp_head(x[:, 0]) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim = None, max_mem_len = 0., shift_mem_down = 0, emb_dropout = 0., num_memory_tokens = None, tie_embedding = False, use_pos_emb = True ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.token_emb = nn.Embedding(num_tokens, emb_dim) self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_() self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): nn.init.kaiming_normal_(self.token_emb.weight) def forward( self, x, return_embeddings = False, mask = None, return_mems = False, return_attn = False, mems = None, **kwargs ): b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens x = self.token_emb(x) x = x + self.pos_emb(x) x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b = b) x = torch.cat((mem, x), dim = 1) # auto-handle masking after appending memory tokens if exists(mask): mask = F.pad(mask, (num_mem, 0), value = True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) x = self.norm(x) mem, x = x[:, :num_mem], x[:, num_mem:] out = self.to_logits(x) if not return_embeddings else x if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class ContinuousTransformerWrapper(nn.Module): def __init__( self, *, max_seq_len, attn_layers, dim_in = None, dim_out = None, emb_dim = None, emb_dropout = 0., use_pos_emb = True ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim self.max_seq_len = max_seq_len self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if (use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() def forward( self, x, return_embeddings = False, mask = None, return_attn = False, mems = None, **kwargs ): b, n, _, device = *x.shape, x.device x = self.project_in(x) x = x + self.pos_emb(x) x = self.emb_dropout(x) x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) x = self.norm(x) out = self.project_out(x) if not return_embeddings else x if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class XTransformer(nn.Module): def __init__( self, *, dim, tie_token_emb = False, **kwargs ): super().__init__() enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) enc_transformer_kwargs['use_pos_emb'] = enc_kwargs.pop('use_pos_emb', True) dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) dec_transformer_kwargs['use_pos_emb'] = dec_kwargs.pop('use_pos_emb', True) self.encoder = TransformerWrapper( **enc_transformer_kwargs, attn_layers = Encoder(dim = dim, **enc_kwargs) ) self.decoder = TransformerWrapper( **dec_transformer_kwargs, attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) ) if tie_token_emb: self.decoder.token_emb = self.encoder.token_emb self.decoder = AutoregressiveWrapper(self.decoder) @torch.no_grad() def generate(self, seq_in, seq_out_start, seq_len, src_mask = None, src_attn_mask = None, **kwargs): encodings = self.encoder(seq_in, mask = src_mask, attn_mask = src_attn_mask, return_embeddings = True) return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = src_mask, **kwargs) def forward(self, src, tgt, src_mask = None, tgt_mask = None, src_attn_mask = None): enc = self.encoder(src, mask = src_mask, attn_mask = src_attn_mask, return_embeddings = True) out = self.decoder(tgt, context = enc, mask = tgt_mask, context_mask = src_mask) return out