import torch import torch.nn as nn import torch.nn.functional as F from munch import munchify from torch import LongTensor from tqdm import tqdm from models.arch_util import ConvGnSilu from models.gpt_voice.pixelshuffle_1d import PixelUnshuffle1D, PixelShuffle1D from models.tacotron2 import hparams from models.tacotron2.taco_utils import get_mask_from_lengths from models.tacotron2.tacotron2 import Postnet from models.tacotron2.text import symbols from models.gpt_voice.min_gpt import GPT, GPTConfig from trainer.networks import register_model class GptTts(nn.Module): NUMBER_SYMBOLS = len(symbols)+3 TEXT_START_TOKEN = NUMBER_SYMBOLS-3 TEXT_STOP_TOKEN = NUMBER_SYMBOLS-2 TEXT_PAD_TOKEN = NUMBER_SYMBOLS-1 MEL_DICTIONARY_SIZE = 512+3 MEL_START_TOKEN = MEL_DICTIONARY_SIZE-3 MEL_STOP_TOKEN = MEL_DICTIONARY_SIZE-2 MEL_PAD_TOKEN = MEL_DICTIONARY_SIZE-1 def __init__(self): super().__init__() model_dim = 512 max_symbols_per_phrase = 200 max_mel_frames = 900 * 3 // 8 # The VQVAE outputs 3/8 of the input mel as tokens. mel_dim=80 self.model_dim = model_dim self.max_mel_frames = max_mel_frames self.text_embedding = nn.Embedding(self.NUMBER_SYMBOLS, model_dim) self.mel_embedding = nn.Embedding(self.MEL_DICTIONARY_SIZE, model_dim) # *_tags are additively applied to self.text_pos_embedding = nn.Embedding(max_symbols_per_phrase, model_dim) self.mel_pos_embedding = nn.Embedding(max_mel_frames, model_dim) self.gpt = GPT(GPTConfig(1+max_symbols_per_phrase+max_mel_frames, n_embd=model_dim, n_head=8), do_pos_emb=False) self.final_norm = nn.LayerNorm(model_dim) self.text_head = nn.Linear(model_dim, self.NUMBER_SYMBOLS) self.mel_head = nn.Linear(model_dim, self.MEL_DICTIONARY_SIZE) def forward(self, text_inputs, text_lengths, mel_targets, output_lengths): text_emb = self.text_embedding(text_inputs) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) mel_emb = self.mel_embedding(mel_targets) mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_targets.shape[1], device=mel_targets.device)) emb = torch.cat([text_emb, mel_emb], dim=1) enc = self.gpt(emb) # Compute logits for text and mel heads text_logits = self.final_norm(enc[:, :text_emb.shape[1]]) text_logits = self.text_head(text_logits) mel_logits = self.final_norm(enc[:, text_emb.shape[1]:]) mel_logits = self.mel_head(mel_logits) # Compute loss text_targets = text_inputs[:,1:] text_logits = text_logits.permute(0,2,1)[:,:,:-1] # The last element of the logits is unneeded because the input to the transformer contains a token for both text and mel. loss_text = F.cross_entropy(text_logits, text_targets, reduction='none') mel_targets = mel_targets[:,1:] mel_logits = mel_logits.permute(0,2,1)[:,:,:-1] loss_mel = F.cross_entropy(mel_logits, mel_targets, reduction='none') # Apply a reduction factor across MEL_PAD and TEXT_PAD tokens. pad_loss_reduction_factor = .01 text_pad_mask = ~get_mask_from_lengths(text_lengths-1, text_inputs.shape[1]-1) # -1 to strip off , which is accounted for in text_lengths and output_lengths. mel_pad_mask = ~get_mask_from_lengths(output_lengths-1, mel_targets.shape[1]) loss_text = loss_text * torch.ones_like(loss_text).masked_fill_(text_pad_mask, pad_loss_reduction_factor) loss_mel = loss_mel * torch.ones_like(loss_mel).masked_fill_(mel_pad_mask, pad_loss_reduction_factor) # Fix up mel_logits so it can go into a VAE decoder as well. mel_codes = torch.argmax(F.softmax(mel_logits, dim=1), dim=1) mel_codes = mel_codes * torch.ones_like(mel_codes).masked_fill_(mel_pad_mask, 0) mel_codes = mel_codes[:,: -1] # Strip off token too (or padding). The important part is that the output sequence length is identical to the VAE input. extra_mask = mel_codes < self.MEL_DICTIONARY_SIZE-3 # The VAE doesn't know about START/STOP/PAD mel_codes = mel_codes * extra_mask return loss_text.mean(), loss_mel.mean(), mel_codes def inference(self, text_inputs): text_emb = self.text_embedding(text_inputs) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) mel_seq = [self.MEL_START_TOKEN, 0] while mel_seq[-1] != self.MEL_STOP_TOKEN and len(mel_seq) < self.max_mel_frames: mel_seq.append(0) mel_emb = self.mel_embedding(torch.tensor(mel_seq, dtype=torch.long, device=text_inputs.device)).unsqueeze(0) mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) emb = torch.cat([text_emb, mel_emb], dim=1) enc = self.gpt(emb) mel_logits = self.final_norm(enc[:, text_emb.shape[1]:]) mel_logits = self.mel_head(mel_logits) mel_codes = torch.argmax(F.softmax(mel_logits, dim=-1), dim=-1) mel_seq[-1] = mel_codes[-1] if len(mel_seq) >= self.max_mel_frames: print("Warning! Encountered frame limit before a stop token. Output is likely wrong.") # Prevent sending invalid tokens to the VAE mel_seq = [s if s < 512 else 0 for s in mel_seq] return mel_seq[:-1] @register_model def register_gpt_tts(opt_net, opt): return GptTts() if __name__ == '__main__': gpt = GptTts() l1, l2, i = gpt(torch.randint(high=24, size=(2,60)), torch.tensor([55,58]), torch.randint(high=512, size=(2,310)), torch.tensor([300,305])) print(i.shape) #o = gpt.infer(torch.randint(high=24, size=(2,60))) #print(o.shape)