import itertools import random from random import randrange import torch import torch.nn as nn import torch.nn.functional as F from models.arch_util import ResBlock, TimestepEmbedSequential, AttentionBlock, build_local_attention_mask, cGLU, \ RelativeQKBias from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear from models.diffusion.unet_diffusion import TimestepBlock from trainer.networks import register_model from utils.util import checkpoint class SubBlock(nn.Module): def __init__(self, inp_dim, contraction_dim, heads, dropout): super().__init__() self.dropout = nn.Dropout(p=dropout) self.attn = AttentionBlock(inp_dim, out_channels=contraction_dim, num_heads=heads) self.register_buffer('mask', build_local_attention_mask(n=4000, l=64), persistent=False) self.pos_bias = RelativeQKBias(l=64) ff_contract = contraction_dim//2 self.ff1 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim, ff_contract, kernel_size=1), nn.GroupNorm(8, ff_contract), cGLU(ff_contract)) self.ff2 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim*3//2, ff_contract, kernel_size=3, padding=1), nn.GroupNorm(8, ff_contract), cGLU(ff_contract)) def forward(self, x): ah = self.dropout(self.attn(x, mask=self.mask, qk_bias=self.pos_bias(x.shape[-1]))) h = torch.cat([ah, x], dim=1) hf = self.dropout(checkpoint(self.ff1, h)) h = torch.cat([h, hf], dim=1) hf = self.dropout(checkpoint(self.ff2, h)) return torch.cat([h, hf], dim=1) class ConcatAttentionBlock(TimestepBlock): def __init__(self, trunk_dim, contraction_dim, blk_dim, heads, dropout): super().__init__() self.contraction_dim = contraction_dim self.prenorm = nn.GroupNorm(8, trunk_dim) self.block1 = SubBlock(trunk_dim+blk_dim, contraction_dim, heads, dropout) self.block2 = SubBlock(trunk_dim+blk_dim+contraction_dim*2, contraction_dim, heads, dropout) self.out = nn.Conv1d(contraction_dim*4, trunk_dim, kernel_size=1, bias=False) self.out.weight.data.zero_() def forward(self, x, blk_emb): h = self.prenorm(x) h = torch.cat([h, blk_emb.unsqueeze(-1).repeat(1,1,x.shape[-1])], dim=1) h = self.block1(h) h = self.block2(h) h = self.out(h[:,-self.contraction_dim*4:]) return h + x class ConditioningEncoder(nn.Module): def __init__(self, spec_dim, hidden_dim, out_dim, num_resolutions, attn_blocks=6, num_attn_heads=4, do_checkpointing=False): super().__init__() attn = [] self.init = nn.Conv1d(spec_dim, hidden_dim, kernel_size=5, stride=2) self.resolution_embedding = nn.Embedding(num_resolutions, hidden_dim) self.resolution_embedding.weight.data.mul(.1) # Reduces the relative influence of this embedding from the start. for a in range(attn_blocks): attn.append(AttentionBlock(hidden_dim, num_attn_heads, do_checkpoint=do_checkpointing)) attn.append(ResBlock(hidden_dim, dims=1, checkpointing_enabled=do_checkpointing)) self.attn = nn.Sequential(*attn) self.out = nn.Linear(hidden_dim, out_dim, bias=False) self.dim = hidden_dim self.do_checkpointing = do_checkpointing def forward(self, x, resolution): h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1) h = self.attn(h) return self.out(h[:, :, 0]) class TransformerDiffusion(nn.Module): """ A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way? """ def __init__( self, resolution_steps=8, max_window=384, model_channels=1024, contraction_dim=256, num_layers=8, in_channels=256, input_vec_dim=1024, out_channels=512, # mean and variance time_embed_dim=256, time_proj_dim=64, cond_proj_dim=256, num_heads=4, dropout=0, use_fp16=False, # Parameters for regularization. unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training. ): super().__init__() self.in_channels = in_channels self.model_channels = model_channels self.time_embed_dim = time_embed_dim self.out_channels = out_channels self.dropout = dropout self.unconditioned_percentage = unconditioned_percentage self.enable_fp16 = use_fp16 self.resolution_steps = resolution_steps self.max_window = max_window self.preprocessed = None self.time_embed = nn.Sequential( linear(time_embed_dim, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_proj_dim), ) self.prior_time_embed = nn.Sequential( linear(time_embed_dim, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_proj_dim), ) self.resolution_embed = nn.Embedding(resolution_steps, time_proj_dim) self.conditioning_encoder = ConditioningEncoder(in_channels, model_channels, cond_proj_dim, resolution_steps, num_attn_heads=model_channels//64) self.unconditioned_embedding = nn.Parameter(torch.randn(1,cond_proj_dim)) self.inp_block = conv_nd(1, in_channels+input_vec_dim, model_channels, 3, 1, 1) self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_proj_dim*3 + cond_proj_dim, num_heads, dropout) for _ in range(num_layers)]) self.out = nn.Sequential( normalization(model_channels), nn.SiLU(), zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)), ) self.debug_codes = {} def input_to_random_resolution_and_window(self, x, ts, diffuser): """ This function MUST be applied to the target *before* noising. It returns the reduced, re-scoped target as well as caches an internal prior for the rescoped target which will be used in training. Args: x: Diffusion target """ resolution = randrange(0, self.resolution_steps) resolution_scale = 2 ** resolution s = F.interpolate(x, scale_factor=1/resolution_scale, mode='nearest') s_diff = s.shape[-1] - self.max_window if s_diff > 1: start = randrange(0, s_diff) s = s[:,:,start:start+self.max_window] s_prior = F.interpolate(s, scale_factor=.25, mode='nearest') s_prior = F.interpolate(s_prior, size=(s.shape[-1],), mode='linear', align_corners=True) # Now diffuse the prior randomly between the x timestep and 0. adv = torch.rand_like(ts.float()) t_prior = (adv * ts).long() - 1 # The t_prior-1 below is an important detail: it forces s_prior to be unmodified for ts=0. It also means that t_prior is not on the same timescale as ts (instead it is shifted by 1). s_prior_diffused = diffuser.q_sample(s_prior, t_prior-1, torch.randn_like(s_prior), allow_negatives=True) self.preprocessed = (s_prior_diffused, t_prior, torch.tensor([resolution] * x.shape[0], dtype=torch.long, device=x.device)) return s def forward(self, x, timesteps, prior_timesteps=None, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False): """ Predicts the previous diffusion timestep of x, given a partially diffused low-resolution prior and a conditioning input. All parameters are optional because during training, input_to_random_resolution_and_window is used by a training harness to preformat the inputs and fill in the parameters as state variables. Args: x: Prediction prior. timesteps: Number of timesteps x has been diffused for. prior_timesteps: Number of timesteps x_prior has been diffused for. Must be <= timesteps for each batch element. If nothing is specified, then [0] is assumed, e.g. a fully diffused prior. x_prior: A low-resolution prior that guides the model. resolution: Integer indicating the operating resolution level. '0' is the highest resolution. conditioning_input: A semi-related (un-aligned) conditioning input which is used to guide diffusion. Similar to a class input, but hooked to a learned conditioning encoder. conditioning_free: Whether or not to ignore the conditioning input. """ conditioning_input = x_prior if conditioning_input is None else conditioning_input if resolution is None: # This is assumed to be training. assert self.preprocessed is not None, 'Preprocessing function not called.' assert x_prior is None, 'Provided prior will not be used, instead preprocessing output will be used.' x_prior, prior_timesteps, resolution = self.preprocessed self.preprocessed = None else: assert x.shape[-1] > x_prior.shape[-1] * 3.9, f'{x.shape} {x_prior.shape}' if prior_timesteps is None: # This is taken to mean a fully diffused prior was given. prior_timesteps = torch.tensor([0], device=x.device) # Assuming batch_size=1 for inference. x_prior = F.interpolate(x_prior, size=(x.shape[-1],), mode='linear', align_corners=True) assert torch.all(timesteps - prior_timesteps >= 0), f'Prior timesteps should always be lower (more resolved) than input timesteps. {timesteps}, {prior_timesteps}' if conditioning_free: code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1) else: MIN_COND_LEN = 200 MAX_COND_LEN = 1200 if self.training and conditioning_input.shape[-1] > MAX_COND_LEN: clen = randrange(MIN_COND_LEN, MAX_COND_LEN) gap = conditioning_input.shape[-1] - clen cstart = randrange(0, gap) conditioning_input = conditioning_input[:,:,cstart:cstart+clen] code_emb = self.conditioning_encoder(conditioning_input, resolution) # Mask out the conditioning input and x_prior inputs for whole batch elements, implementing something similar to classifier-free guidance. if self.training and self.unconditioned_percentage > 0: unconditioned_batches = torch.rand((x.shape[0], 1), device=x.device) < self.unconditioned_percentage code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(code_emb.shape[0], 1), code_emb) with torch.autocast(x.device.type, enabled=self.enable_fp16): time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim)) prior_time_emb = self.prior_time_embed(timestep_embedding(prior_timesteps, self.time_embed_dim)) res_emb = self.resolution_embed(resolution) blk_emb = torch.cat([time_emb, prior_time_emb, res_emb, code_emb], dim=1) h = torch.cat([x, x_prior], dim=1) h = self.inp_block(h) for layer in self.layers: h = checkpoint(layer, h, blk_emb) h = h.float() out = self.out(h) # Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. unused_params = [self.unconditioned_embedding] extraneous_addition = 0 for p in unused_params: extraneous_addition = extraneous_addition + p.mean() out = out + extraneous_addition * 0 return out def get_grad_norm_parameter_groups(self): attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers])) attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers])) ff1 = list(itertools.chain.from_iterable([lyr.block1.ff1.parameters() for lyr in self.layers] + [lyr.block1.ff2.parameters() for lyr in self.layers])) ff2 = list(itertools.chain.from_iterable([lyr.block2.ff1.parameters() for lyr in self.layers] + [lyr.block2.ff2.parameters() for lyr in self.layers])) blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers])) groups = { 'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])), 'blk1_attention_layers': attn1, 'blk2_attention_layers': attn2, 'attention_layers': attn1 + attn2, 'blk1_ff_layers': ff1, 'blk2_ff_layers': ff2, 'ff_layers': ff1 + ff2, 'block_out_layers': blkout_layers, 'out': list(self.out.parameters()), 'x_proj': list(self.inp_block.parameters()), 'layers': list(self.layers.parameters()), 'time_embed': list(self.time_embed.parameters()), 'prior_time_embed': list(self.prior_time_embed.parameters()), 'resolution_embed': list(self.resolution_embed.parameters()), } return groups def before_step(self, step): scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers])) # Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes # higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than # directly fiddling with the gradients. for p in scaled_grad_parameters: if hasattr(p, 'grad') and p.grad is not None: p.grad *= .2 @register_model def register_transformer_diffusion13(opt_net, opt): return TransformerDiffusion(**opt_net['kwargs']) def test_tfd(): from models.diffusion.respace import SpacedDiffusion from models.diffusion.respace import space_timesteps from models.diffusion.gaussian_diffusion import get_named_beta_schedule diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [4000]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000)) clip = torch.randn(2,256,10336) cond = torch.randn(2,256,10336) ts = torch.LongTensor([0, 0]) model = TransformerDiffusion(in_channels=256, model_channels=1024, contraction_dim=512, num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1, unconditioned_percentage=.6) model.get_grad_norm_parameter_groups() for k in range(100): x = model.input_to_random_resolution_and_window(clip, ts, diffuser) model(x, ts, conditioning_input=cond) def remove_conditioning(sd_path): sd = torch.load(sd_path) del sd['unconditioned_embedding'] torch.save(sd, sd_path.replace('.pth', '') + '_fixed.pth') if __name__ == '__main__': #remove_conditioning('X:\\dlas\\experiments\\train_music_diffusion_multilevel_sr_pre\\models\\12500_generator.pth') test_tfd()