"""
Lamb optimizer.

Adapted from original source: https://github.com/cybertronai/pytorch-lamb/blob/master/pytorch_lamb/lamb.py
"""

import collections
import math

import torch
from torch.optim import Optimizer


class Lamb(Optimizer):
    r"""Implements Lamb algorithm.

    It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        adam (bool, optional): always use trust ratio = 1, which turns this into
            Adam. Useful for comparison purposes.

    .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
        https://arxiv.org/abs/1904.00962
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
                 weight_decay=0, adam=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay)
        self.adam = adam
        super(Lamb, self).__init__(params, defaults)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                # Decay the first and second moment running average coefficient
                # m_t
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                # v_t
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

                # Paper v3 does not use debiasing.
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
                # Apply bias to lr to avoid broadcast.
                step_size = group['lr'] # * math.sqrt(bias_correction2) / bias_correction1

                weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)

                adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
                if group['weight_decay'] != 0:
                    adam_step.add_(p.data, alpha=group['weight_decay'])

                adam_norm = adam_step.pow(2).sum().sqrt()
                if weight_norm == 0 or adam_norm == 0:
                    trust_ratio = 1
                else:
                    trust_ratio = weight_norm / adam_norm
                state['weight_norm'] = weight_norm
                state['adam_norm'] = adam_norm
                state['trust_ratio'] = trust_ratio
                if self.adam:
                    trust_ratio = 1

                p.data.add_(adam_step, alpha=-step_size * trust_ratio)

        return loss


    def debug(self):
        """Returns a histogram dict for recording various norms and the trust ratio."""
        results = collections.defaultdict(list)
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                for i in ('weight_norm', 'adam_norm', 'trust_ratio'):
                    if i in state:
                        results[i].append(state[i])

        res = {}
        for k, v in results.items():
            res[f'histogram_lamb_{k}'] = torch.tensor(v)
        return res