import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, models, transforms import tqdm from torch.utils.tensorboard import SummaryWriter import torch.nn.init as init import torch.nn.functional as F def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) class ConvSwitch(nn.Module): ''' Initializes the ConvSwitch. nf_attention_basis: Number of filters provided to the attention_basis input of forward(). Must be divisible by two and nf_attention_basis/2 >= num_convs. num_convs: Number of elements that will appear in the conv_group() input. The attention mechanism will select across this number. att_kernel_size: The size of the attention mechanisms convolutional kernels. att_stride: The stride of the attention mechanisms conv blocks. att_pads: The padding of the attention mechanisms conv blocks. att_interpolate_scale_factor: The scale factor applied to the attention mechanism's outputs. *** NOTE ***: Between stride, pads, and interpolation_scale_factor, the output of the attention mechanism MUST have the same width/height as the conv_group inputs. initial_temperature: The initial softmax temperature of the attention mechanism. For training from scratch, this should be set to a high number, for example 30. ''' def __init__(self, nf_attention_basis, num_convs=8, att_kernel_size=5, att_stride=1, att_pads=2, att_interpolate_scale_factor=1, initial_temperature=1): super(ConvSwitch, self).__init__() # Requirements: input filter count is even, and there are more filters than there are sequences to attend to. assert nf_attention_basis % 2 == 0 assert nf_attention_basis / 2 >= num_convs self.num_convs = num_convs self.interpolate_scale_factor = att_interpolate_scale_factor self.attention_conv1 = nn.Conv2d(nf_attention_basis, int(nf_attention_basis / 2), att_kernel_size, att_stride, att_pads, bias=True) self.att_bn1 = nn.BatchNorm2d(int(nf_attention_basis / 2)) self.attention_conv2 = nn.Conv2d(int(nf_attention_basis / 2), num_convs, att_kernel_size, 1, att_pads, bias=True) self.softmax = nn.Softmax(dim=-1) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.temperature = initial_temperature def set_attention_temperature(self, temp): self.temperature = temp # SwitchedConv.forward takes these arguments; # attention_basis: The tensor to compute attention vectors from. Generally this should be the original inputs of # your conv group. # conv_group: A list of output tensors from the convolutional groups that the attention mechanism is selecting # from. Each tensor in this list is expected to have the shape (batch, filters, width, height) def forward(self, attention_basis, conv_group, output_attention_weights=False): assert self.num_convs == len(conv_group) # Stack up the conv_group input first and permute it to (batch, width, height, filter, groups) conv_outputs = torch.stack(conv_outputs, dim=0).permute(1, 3, 4, 2, 0) # Now calculate the attention across those convs. conv_attention = self.lrelu(self.att_bn1(self.attention_conv1(attention_basis))) conv_attention = self.attention_conv2(conv_attention).permute(0, 2, 3, 1) conv_attention = self.softmax(conv_attention / self.temperature) # conv_outputs shape: (batch, width, height, filters, groups) # conv_attention shape: (batch, width, height, groups) # We want to format them so that we can matmul them together to produce: # desired shape: (batch, width, height, filters) # Note: conv_attention will generally be cast to float32 regardless of the input type, so cast conv_outputs to # float32 as well to match it. attention_result = torch.einsum("...ij,...j->...i", [conv_outputs.to(dtype=torch.float32), conv_attention]) # Remember to shift the filters back into the expected slot. if output_attention_weights: return attention_result.permute(0, 3, 1, 2), conv_attention else: return attention_result.permute(0, 3, 1, 2) class SwitchedConv2d(nn.Module): def __init__(self, nf_in_per_conv, nf_out_per_conv, num_convs=8, att_kernel_size=5, att_stride=1, att_pads=2, initial_temperature=1): super(ConvSwitch, self).__init__() # Requirements: input filter count is even, and there are more filters than there are sequences to attend to. assert nf_in_per_conv % 2 == 0 assert nf_in_per_conv / 2 >= num_convs self.nf = nf_out_per_conv self.num_convs = num_convs self.conv_list = nn.ModuleList([nn.Conv2d(nf_in_per_conv, nf_out_per_conv, kernel_size, att_stride, pads, bias=has_bias) for _ in range(num_convs)]) self.attention_conv1 = nn.Conv2d(nf_in_per_conv, int(nf_in_per_conv/2), att_kernel_size, att_stride, att_pads, bias=True) self.att_bn1 = nn.BatchNorm2d(int(nf_in_per_conv/2)) self.attention_conv2 = nn.Conv2d(int(nf_in_per_conv/2), num_convs, att_kernel_size, 1, att_pads, bias=True) self.softmax = nn.Softmax(dim=-1) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.temperature = initial_temperature def set_attention_temperature(self, temp): self.temperature = temp def forward(self, x, output_attention_weights=False): # Build up the individual conv components first. conv_outputs = [] for conv in self.conv_list: conv_outputs.append(conv.forward(x)) conv_outputs = torch.stack(conv_outputs, dim=0).permute(1, 3, 4, 2, 0) # Now calculate the attention across those convs. conv_attention = self.lrelu(self.att_bn1(self.attention_conv1(x))) conv_attention = self.attention_conv2(conv_attention).permute(0, 2, 3, 1) conv_attention = self.softmax(conv_attention / self.temperature) # conv_outputs shape: (batch, width, height, filters, sequences) # conv_attention shape: (batch, width, height, sequences) # We want to format them so that we can matmul them together to produce: # desired shape: (batch, width, height, filters) # Note: conv_attention will generally be cast to float32 regardless of the input type, so cast conv_outputs to # float32 as well to match it. attention_result = torch.einsum("...ij,...j->...i", [conv_outputs.to(dtype=torch.float32), conv_attention]) # Remember to shift the filters back into the expected slot. if output_attention_weights: return attention_result.permute(0, 3, 1, 2), conv_attention else: return attention_result.permute(0, 3, 1, 2) def compute_attention_specificity(att_weights, topk=3): att = att_weights.detach() vals, indices = torch.topk(att, topk, dim=-1) avg = torch.sum(vals, dim=-1) avg = avg.flatten().mean() return avg.item(), indices.flatten().detach() class DynamicConvTestModule(nn.Module): def __init__(self): super(DynamicConvTestModule, self).__init__() self.init_conv = nn.Conv2d(3, 16, 3, 1, 1, bias=True) self.conv1 = ConvSwitch(16, 32, 3, att_stride=2, pads=1, num_convs=4, initial_temperature=10) self.bn1 = nn.BatchNorm2d(32) self.conv2 = ConvSwitch(32, 64, 3, att_stride=2, pads=1, att_kernel_size=3, att_pads=1, num_convs=8, initial_temperature=10) self.bn2 = nn.BatchNorm2d(64) self.conv3 = ConvSwitch(64, 128, 3, att_stride=2, pads=1, att_kernel_size=3, att_pads=1, num_convs=16, initial_temperature=10) self.bn3 = nn.BatchNorm2d(128) self.relu = nn.ReLU() self.dense1 = nn.Linear(128 * 4 * 4, 256) self.dense2 = nn.Linear(256, 100) self.softmax = nn.Softmax(-1) def set_temp(self, temp): self.conv1.set_attention_temperature(temp) self.conv2.set_attention_temperature(temp) self.conv3.set_attention_temperature(temp) def forward(self, x): x = self.init_conv(x) x, att1 = self.conv1(x, output_attention_weights=True) x = self.relu(self.bn1(x)) x, att2 = self.conv2(x, output_attention_weights=True) x = self.relu(self.bn2(x)) x, att3 = self.conv3(x, output_attention_weights=True) x = self.relu(self.bn3(x)) atts = [att1, att2, att3] usage_hists = [] mean = 0 for a in atts: m, u = compute_attention_specificity(a) mean += m usage_hists.append(u) mean /= 3 x = x.flatten(1) x = self.relu(self.dense1(x)) x = self.dense2(x) # Compute metrics across attention weights. return self.softmax(x), mean, usage_hists def test_dynamic_conv(): writer = SummaryWriter() dataset = datasets.ImageFolder("C:\\data\\cifar-100-python\\images\\train", transforms.Compose([ transforms.Resize(32, 32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) batch_size = 256 temperature = 30 loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) device = torch.device("cuda:0") net = DynamicConvTestModule() net = net.to(device) net.set_temp(temperature) initialize_weights(net) optimizer = optim.Adam(net.parameters(), lr=1e-3) # Load state, where necessary. ''' netstate, optimstate = torch.load("test_net.pth") net.load_state_dict(netstate) optimizer.load_state_dict(optimstate) ''' criterion = nn.CrossEntropyLoss() step = 0 running_corrects = 0 running_att_mean = 0 running_att_hist = None for e in range(300): tq = tqdm.tqdm(loader) for batch, labels in tq: batch = batch.to(device) labels = labels.to(device) optimizer.zero_grad() logits, att_mean, att_usage_hist = net.forward(batch) running_att_mean += att_mean if running_att_hist is None: running_att_hist = att_usage_hist else: for i in range(len(att_usage_hist)): running_att_hist[i] = torch.cat([running_att_hist[i], att_usage_hist[i]]).flatten() loss = criterion(logits, labels) loss.backward() if step % 50 == 0: c1_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv1.conv_list._modules.values()]) / len(net.conv1.conv_list._modules) c1a_grad_avg = (net.conv1.attention_conv1.weight.grad.abs().mean() + net.conv1.attention_conv2.weight.grad.abs().mean()) / 2 c2_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv2.conv_list._modules.values()]) / len(net.conv2.conv_list._modules) c2a_grad_avg = (net.conv2.attention_conv1.weight.grad.abs().mean() + net.conv2.attention_conv2.weight.grad.abs().mean()) / 2 c3_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv3.conv_list._modules.values()]) / len(net.conv3.conv_list._modules) c3a_grad_avg = (net.conv3.attention_conv1.weight.grad.abs().mean() + net.conv3.attention_conv2.weight.grad.abs().mean()) / 2 writer.add_scalar("c1_grad_avg", c1_grad_avg, global_step=step) writer.add_scalar("c2_grad_avg", c2_grad_avg, global_step=step) writer.add_scalar("c3_grad_avg", c3_grad_avg, global_step=step) writer.add_scalar("c1a_grad_avg", c1a_grad_avg, global_step=step) writer.add_scalar("c2a_grad_avg", c2a_grad_avg, global_step=step) writer.add_scalar("c3a_grad_avg", c3a_grad_avg, global_step=step) optimizer.step() _, preds = torch.max(logits, 1) running_corrects += torch.sum(preds == labels.data) if step % 50 == 0: print("Step: %i, Loss: %f, acc: %f, att_mean: %f" % (step, loss.item(), running_corrects / (50.0 * batch_size), running_att_mean / 50.0)) writer.add_scalar("Loss", loss.item(), global_step=step) writer.add_scalar("Accuracy", running_corrects / (50.0 * batch_size), global_step=step) writer.add_scalar("Att Mean", running_att_mean / 50, global_step=step) for i in range(len(running_att_hist)): writer.add_histogram("Att Hist %i" % (i,), running_att_hist[i], global_step=step) writer.flush() running_corrects = 0 running_att_mean = 0 running_att_hist = None if step % 1000 == 0: temperature = max(temperature-1, 1) net.set_temp(temperature) print("Temperature drop. Now: %i" % (temperature,)) step += 1 torch.save((net.state_dict(), optimizer.state_dict()), "test_net.pth") if __name__ == '__main__': test_dynamic_conv()