import numpy as np import torch from torch import nn as nn from torch.nn import functional as F from dlas.models.image_generation.srflow import thops class InvertibleConv1x1(nn.Module): def __init__(self, num_channels, LU_decomposed=False): super().__init__() w_shape = [num_channels, num_channels] w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(np.float32) self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) self.w_shape = w_shape self.LU = LU_decomposed def get_weight(self, input, reverse): w_shape = self.w_shape pixels = thops.pixels(input) dlogdet = torch.slogdet(self.weight)[1] * pixels if not reverse: weight = self.weight.view(w_shape[0], w_shape[1], 1, 1) else: weight = torch.inverse(self.weight.double()).float() \ .view(w_shape[0], w_shape[1], 1, 1) return weight, dlogdet def forward(self, input, logdet=None, reverse=False): """ log-det = log|abs(|W|)| * pixels """ weight, dlogdet = self.get_weight(input, reverse) if not reverse: z = F.conv2d(input, weight) if logdet is not None: logdet = logdet + dlogdet return z, logdet else: z = F.conv2d(input, weight) if logdet is not None: logdet = logdet - dlogdet return z, logdet