import functools from math import sqrt import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from dlas.models.vqvae.vector_quantizer import VectorQuantize from dlas.trainer.networks import register_model from dlas.utils.util import opt_get def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner class ResBlock(nn.Module): def __init__(self, chan, conv, activation): super().__init__() self.net = nn.Sequential( conv(chan, chan, 3, padding=1), activation(), conv(chan, chan, 3, padding=1), activation(), conv(chan, chan, 1) ) def forward(self, x): return self.net(x) + x class UpsampledConv(nn.Module): def __init__(self, conv, *args, **kwargs): super().__init__() assert 'stride' in kwargs.keys() self.stride = kwargs['stride'] del kwargs['stride'] self.conv = conv(*args, **kwargs) def forward(self, x): up = nn.functional.interpolate( x, scale_factor=self.stride, mode='nearest') return self.conv(up) class DiscreteVAE(nn.Module): def __init__( self, positional_dims=2, num_tokens=512, codebook_dim=512, num_layers=3, num_resnet_blocks=0, hidden_dim=64, channels=3, stride=2, kernel_size=3, activation='relu', straight_through=False, record_codes=False, discretization_loss_averaging_steps=100, quantizer_use_cosine_sim=True, quantizer_codebook_misses_to_expiration=40, quantizer_codebook_embedding_compression=None, ): super().__init__() assert num_layers >= 1, 'number of layers must be greater than or equal to 1' has_resblocks = num_resnet_blocks > 0 self.num_tokens = num_tokens self.num_layers = num_layers self.straight_through = straight_through self.positional_dims = positional_dims # This VAE only supports 1d and 2d inputs for now. assert positional_dims > 0 and positional_dims < 3 if positional_dims == 2: conv = nn.Conv2d conv_transpose = functools.partial(UpsampledConv, conv) else: conv = nn.Conv1d conv_transpose = functools.partial(UpsampledConv, conv) if activation == 'relu': act = nn.ReLU elif activation == 'silu': act = nn.SiLU else: assert NotImplementedError() enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)] dec_chans = list(reversed(enc_chans)) enc_chans = [channels, *enc_chans] dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] dec_chans = [dec_init_chan, *dec_chans] enc_chans_io, dec_chans_io = map(lambda t: list( zip(t[:-1], t[1:])), (enc_chans, dec_chans)) enc_layers = [] dec_layers = [] pad = (kernel_size - 1) // 2 for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): enc_layers.append(nn.Sequential( conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act())) dec_layers.append(nn.Sequential(conv_transpose( dec_in, dec_out, kernel_size, stride=stride, padding=pad), act())) for _ in range(num_resnet_blocks): dec_layers.insert(0, ResBlock(dec_chans[1], conv, act)) enc_layers.append(ResBlock(enc_chans[-1], conv, act)) if num_resnet_blocks > 0: dec_layers.insert(0, conv(codebook_dim, dec_chans[1], 1)) enc_layers.append(conv(enc_chans[-1], codebook_dim, 1)) dec_layers.append(conv(dec_chans[-1], channels, 1)) self.encoder = nn.Sequential(*enc_layers) self.quantizer = VectorQuantize(codebook_dim, num_tokens, codebook_dim=quantizer_codebook_embedding_compression, use_cosine_sim=quantizer_use_cosine_sim, max_codebook_misses_before_expiry=quantizer_codebook_misses_to_expiration) self.decoder = nn.Sequential(*dec_layers) self.loss_fn = F.mse_loss self.record_codes = record_codes if record_codes: self.codes = torch.zeros((1228800,), dtype=torch.long) self.code_ind = 0 self.internal_step = 0 def get_debug_values(self, step, __): if self.record_codes: # Report annealing schedule return {'histogram_codes': self.codes} else: return {} @torch.no_grad() @eval_decorator def get_codebook_indices(self, images): logits = self.encoder(images).permute( (0, 2, 3, 1) if len(images.shape) == 4 else (0, 2, 1)) sampled, codes, commitment_loss = self.quantizer(logits) return codes def decode( self, img_seq ): self.log_codes(img_seq) image_embeds = self.quantizer.decode(img_seq) b, n, d = image_embeds.shape kwargs = {} if self.positional_dims == 1: arrange = 'b n d -> b d n' else: h = w = int(sqrt(n)) arrange = 'b (h w) d -> b d h w' kwargs = {'h': h, 'w': w} image_embeds = rearrange(image_embeds, arrange, **kwargs) images = [image_embeds] for layer in self.decoder: images.append(layer(images[-1])) return images[-1], images[-2] def infer(self, img): logits = self.encoder(img).permute( (0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) sampled, codes, commitment_loss = self.quantizer(logits) return self.decode(codes) # Note: This module is not meant to be run in forward() except while training. It has special logic which performs # evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially # more lossy (but useful for determining network performance). def forward( self, img ): logits = self.encoder(img).permute( (0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) sampled, codes, commitment_loss = self.quantizer(logits) sampled = sampled.permute( (0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1)) if self.training: out = sampled for d in self.decoder: out = d(out) else: # This is non-differentiable, but gives a better idea of how the network is actually performing. out, _ = self.decode(codes) # reconstruction loss recon_loss = self.loss_fn(img, out, reduction='none') # This is so we can debug the distribution of codes being learned. self.log_codes(codes) return recon_loss, commitment_loss, out def log_codes(self, codes): # This is so we can debug the distribution of codes being learned. if self.record_codes and self.internal_step % 50 == 0: codes = codes.flatten() l = codes.shape[0] i = self.code_ind if ( self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l self.codes[i:i+l] = codes.cpu() self.code_ind = self.code_ind + l if self.code_ind >= self.codes.shape[0]: self.code_ind = 0 self.internal_step += 1 @register_model def register_dvae(opt_net, opt): return DiscreteVAE(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': # v = DiscreteVAE() # o=v(torch.randn(1,3,256,256)) # print(o.shape) v = DiscreteVAE(channels=80, positional_dims=1, num_tokens=4096, codebook_dim=1024, hidden_dim=512, stride=2, num_resnet_blocks=2, kernel_size=3, num_layers=2, quantizer_codebook_embedding_compression=64) # v.eval() loss, commitment, out = v(torch.randn(1, 80, 256)) print(out.shape) codes = v.get_codebook_indices(torch.randn(1, 80, 256)) back, back_emb = v.decode(codes) print(back.shape)