# # tsne_torch.py # # Implementation of t-SNE in pytorch. The implementation was tested on pytorch # > 1.0, and it requires Numpy to read files. In order to plot the results, # a working installation of matplotlib is required. # # # The example can be run by executing: `python tsne_torch.py` # # # Created by Xiao Li on 23-03-2020. # Copyright (c) 2020. All rights reserved. import argparse from random import shuffle import matplotlib.pyplot as pyplot import numpy as np import torch from matplotlib.offsetbox import AnnotationBbox, OffsetImage from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument("--xfile", type=str, default="mnist2500_X.txt", help="file name of feature stored") parser.add_argument("--cuda", type=int, default=1, help="if use cuda accelarate") opt = parser.parse_args() print("get choice from args", opt) xfile = opt.xfile if opt.cuda: print("set use cuda") torch.set_default_tensor_type(torch.cuda.DoubleTensor) else: torch.set_default_tensor_type(torch.DoubleTensor) def Hbeta_torch(D, beta=1.0): P = torch.exp(-D.clone() * beta) sumP = torch.sum(P) H = torch.log(sumP) + beta * torch.sum(D * P) / sumP P = P / sumP return H, P def x2p_torch(X, tol=1e-5, perplexity=30.0): """ Performs a binary search to get P-values in such a way that each conditional Gaussian has the same perplexity. """ # Initialize some variables print("Computing pairwise distances...") (n, d) = X.shape sum_X = torch.sum(X*X, 1) D = torch.add(torch.add(-2 * torch.mm(X, X.t()), sum_X).t(), sum_X) P = torch.zeros(n, n) beta = torch.ones(n, 1) logU = torch.log(torch.tensor([perplexity])) n_list = [i for i in range(n)] # Loop over all datapoints for i in range(n): # Print progress if i % 500 == 0: print("Computing P-values for point %d of %d..." % (i, n)) # Compute the Gaussian kernel and entropy for the current precision # there may be something wrong with this setting None betamin = None betamax = None Di = D[i, n_list[0:i]+n_list[i+1:n]] (H, thisP) = Hbeta_torch(Di, beta[i]) # Evaluate whether the perplexity is within tolerance Hdiff = H - logU tries = 0 while torch.abs(Hdiff) > tol and tries < 50: # If not, increase or decrease precision if Hdiff > 0: betamin = beta[i].clone() if betamax is None: beta[i] = beta[i] * 2. else: beta[i] = (beta[i] + betamax) / 2. else: betamax = beta[i].clone() if betamin is None: beta[i] = beta[i] / 2. else: beta[i] = (beta[i] + betamin) / 2. # Recompute the values (H, thisP) = Hbeta_torch(Di, beta[i]) Hdiff = H - logU tries += 1 # Set the final row of P P[i, n_list[0:i]+n_list[i+1:n]] = thisP # Return final P-matrix return P def pca_torch(X, no_dims=50): print("Preprocessing the data using PCA...") (n, d) = X.shape X = X - torch.mean(X, 0) (l, M) = torch.eig(torch.mm(X.t(), X), True) # split M real for i in range(d): if l[i, 1] != 0: M[:, i+1] = M[:, i] i += 1 Y = torch.mm(X, M[:, 0:no_dims]) return Y def tsne(X, no_dims=2, initial_dims=50, perplexity=30.0): """ Runs t-SNE on the dataset in the NxD array X to reduce its dimensionality to no_dims dimensions. The syntaxis of the function is `Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array. """ # Check inputs if isinstance(no_dims, float): print("Error: array X should not have type float.") return -1 if round(no_dims) != no_dims: print("Error: number of dimensions should be an integer.") return -1 # Initialize variables # Sending to('cuda') after because torch.eig is broken in Windows currently on Ampere GPUs. X = pca_torch(X, initial_dims).to('cuda') (n, d) = X.shape max_iter = 1000 initial_momentum = 0.5 final_momentum = 0.8 eta = 500 min_gain = 0.01 Y = torch.randn(n, no_dims) dY = torch.zeros(n, no_dims) iY = torch.zeros(n, no_dims) gains = torch.ones(n, no_dims) # Compute P-values P = x2p_torch(X, 1e-5, perplexity) P = P + P.t() P = P / torch.sum(P) P = P * 4. # early exaggeration print("get P shape", P.shape) P = torch.max(P, torch.tensor([1e-21])) # Run iterations for iter in tqdm(range(max_iter)): # Compute pairwise affinities sum_Y = torch.sum(Y*Y, 1) num = -2. * torch.mm(Y, Y.t()) num = 1. / (1. + torch.add(torch.add(num, sum_Y).t(), sum_Y)) num[range(n), range(n)] = 0. Q = num / torch.sum(num) Q = torch.max(Q, torch.tensor([1e-12])) # Compute gradient PQ = P - Q for i in range(n): dY[i, :] = torch.sum( (PQ[:, i] * num[:, i]).repeat(no_dims, 1).t() * (Y[i, :] - Y), 0) # Perform the update if iter < 20: momentum = initial_momentum else: momentum = final_momentum gains = (gains + 0.2) * ((dY > 0.) != (iY > 0.)).double() + \ (gains * 0.8) * ((dY > 0.) == (iY > 0.)).double() gains[gains < min_gain] = min_gain iY = momentum * iY - eta * (gains * dY) Y = Y + iY Y = Y - torch.mean(Y, 0) # Compute current value of cost function if (iter + 1) % 10 == 0: C = torch.sum(P * torch.log(P / Q)) print("Iteration %d: error is %f" % (iter + 1, C)) # Stop lying about P-values if iter == 100: P = P / 4. # Return solution return Y def run_tsne_instance_level(): print("Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.") limit = 4000 X, files = torch.load('../results_instance_resnet.pth') zipped = list(zip(X, files)) shuffle(zipped) X, files = zip(*zipped) X = torch.cat(X, dim=0).squeeze()[:limit] labels = np.zeros(X.shape[0]) # We don't have any labels.. # confirm that x file get same number point than label file # otherwise may cause error in scatter assert (len(X[:, 0]) == len(X[:, 1])) assert (len(X) == len(labels)) with torch.no_grad(): Y = tsne(X, 2, 2048, 20.0) if opt.cuda: Y = Y.cpu().numpy() # You may write result in two files # print("Save Y values in file") # Y1 = open("y1.txt", 'w') # Y2 = open('y2.txt', 'w') # for i in range(Y.shape[0]): # Y1.write(str(Y[i,0])+"\n") # Y2.write(str(Y[i,1])+"\n") pyplot.scatter(Y[:, 0], Y[:, 1], 20, labels) pyplot.show() torch.save((Y, files[:limit]), "../tsne_output.pth") # Uses the results from the calculation above to create a **massive** pdf plot that shows 1/8 size images on the tsne # spectrum. def plot_instance_level_results_as_image_graph(): Y, files = torch.load('../tsne_output.pth') fig, ax = pyplot.subplots() fig.set_size_inches(200, 200, forward=True) ax.update_datalim(np.column_stack([Y[:, 0], Y[:, 1]])) ax.autoscale() for b in tqdm(range(Y.shape[0])): im = pyplot.imread(files[b]) im = OffsetImage(im, zoom=1/2) ab = AnnotationBbox(im, (Y[b, 0], Y[b, 1]), xycoords='data', frameon=False) ax.add_artist(ab) ax.scatter(Y[:, 0], Y[:, 1]) pyplot.savefig('tsne.pdf') random_coords = [(8, 8), (12, 12), (18, 18), (24, 24)] def run_tsne_pixel_level(): limit = 4000 ''' # For spinenet-style latent dicts latent_dict = torch.load('../results/byol_latents/latent_dict_1.pth') id_vals = list(latent_dict.items()) ids, X = zip(*id_vals) X = torch.stack(X, dim=0)[:limit//4] # Unravel X into 4 latents per image, chosen from fixed points. This will serve as a psuedorandom source since these # images are not aligned. b,c,h,w = X.shape X_c = [] for rc in random_coords: X_c.append(X[:, :, rc[0], rc[1]]) X = torch.cat(X_c, dim=0) ''' # For resnet-style latent tuples X, files = torch.load('../../results/2021-4-8-imgset-latent-dict.pth') zipped = list(zip(X, files)) shuffle(zipped) X, files = zip(*zipped) X = torch.stack(X, dim=0)[:limit//4] # Unravel X into 1 latents per image, chosen from fixed points. This will serve as a psuedorandom source since these # images are not aligned. X_c = [] for rc in random_coords: X_c.append(X[:, 0, :, rc[0], rc[1]]) X = torch.cat(X_c, dim=0) labels = np.zeros(X.shape[0]) # We don't have any labels.. # confirm that x file get same number point than label file # otherwise may cause error in scatter assert (len(X[:, 0]) == len(X[:, 1])) assert (len(X) == len(labels)) with torch.no_grad(): Y = tsne(X, 2, 128, 20.0) if opt.cuda: Y = Y.cpu().numpy() # You may write result in two files # print("Save Y values in file") # Y1 = open("y1.txt", 'w') # Y2 = open('y2.txt', 'w') # for i in range(Y.shape[0]): # Y1.write(str(Y[i,0])+"\n") # Y2.write(str(Y[i,1])+"\n") pyplot.scatter(Y[:, 0], Y[:, 1], 20, labels) pyplot.show() torch.save((Y, files[:limit//4]), "../tsne_output_pix.pth") # Uses the results from the calculation above to create a **massive** pdf plot that shows 1/8 size images on the tsne # spectrum. def plot_pixel_level_results_as_image_graph(): Y, files = torch.load('../tsne_output_pix.pth') fig, ax = pyplot.subplots() fig.set_size_inches(200, 200, forward=True) ax.update_datalim(np.column_stack([Y[:, 0], Y[:, 1]])) ax.autoscale() # Should be latent_compression(=8) * image_compression_at_inference(=1) expansion = 8 margins = 4 # Keep in mind this will be multiplied by for b in tqdm(range(Y.shape[0])): if b % 4 == 0: id = b // 4 imgfile = files[id] baseim = pyplot.imread(imgfile) ct, cl = random_coords[b % 4] im = baseim[expansion*(ct-margins):expansion*(ct+margins), expansion*(cl-margins):expansion*(cl+margins), :] im = OffsetImage(im, zoom=1) ab = AnnotationBbox(im, (Y[b, 0], Y[b, 1]), xycoords='data', frameon=False) ax.add_artist(ab) ax.scatter(Y[:, 0], Y[:, 1]) pyplot.savefig('tsne_pix.pdf') def run_tsne_segformer(): print("Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.") limit = 10000 X, points, files = torch.load('../results_segformer.pth') zipped = list(zip(X, points, files)) shuffle(zipped) X, points, files = zip(*zipped) X = torch.cat(X, dim=0).squeeze()[:limit] labels = np.zeros(X.shape[0]) # We don't have any labels.. # confirm that x file get same number point than label file # otherwise may cause error in scatter assert (len(X[:, 0]) == len(X[:, 1])) assert (len(X) == len(labels)) with torch.no_grad(): Y = tsne(X, 2, 1024, 20.0) if opt.cuda: Y = Y.cpu().numpy() # You may write result in two files # print("Save Y values in file") # Y1 = open("y1.txt", 'w') # Y2 = open('y2.txt', 'w') # for i in range(Y.shape[0]): # Y1.write(str(Y[i,0])+"\n") # Y2.write(str(Y[i,1])+"\n") pyplot.scatter(Y[:, 0], Y[:, 1], 20, labels) pyplot.show() torch.save((Y, points, files[:limit]), "../tsne_output.pth") # Uses the results from the calculation above to create a **massive** pdf plot that shows 1/8 size images on the tsne # spectrum. def plot_segformer_results_as_image_graph(): Y, points, files = torch.load('../tsne_output.pth') fig, ax = pyplot.subplots() fig.set_size_inches(200, 200, forward=True) ax.update_datalim(np.column_stack([Y[:, 0], Y[:, 1]])) ax.autoscale() margins = 32 for b in tqdm(range(Y.shape[0])): imgfile = files[b] baseim = pyplot.imread(imgfile) ct, cl = points[b] im = baseim[(ct-margins):(ct+margins), (cl-margins):(cl+margins), :] im = OffsetImage(im, zoom=1) ab = AnnotationBbox(im, (Y[b, 0], Y[b, 1]), xycoords='data', frameon=False) ax.add_artist(ab) ax.scatter(Y[:, 0], Y[:, 1]) pyplot.savefig('tsne_segformer.pdf') if __name__ == "__main__": # For use with instance-level results (e.g. from byol_resnet_playground.py) # run_tsne_instance_level() # plot_instance_level_results_as_image_graph() # For use with pixel-level results (e.g. from byol_uresnet_playground) # run_tsne_pixel_level() # plot_pixel_level_results_as_image_graph() # For use with segformer results run_tsne_segformer() # plot_segformer_results_as_image_graph()