import argparse import os import torch import torchvision from scripts.ui.image_labeler.pretrained_image_patch_classifier import \ PretrainedImagePatchClassifier import dlas.utils.options as option if __name__ == "__main__": # options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/train_imgset_structural_classifier.yml') classifier = PretrainedImagePatchClassifier(parser.parse_args().opt) label_to_search_for = 4 step = 1 for hq, res in classifier.get_next_sample(): res = torch.nn.functional.interpolate( res, size=hq.shape[2:], mode="nearest") res_lbl = res[:, label_to_search_for, :, :].unsqueeze(1) res_lbl_mask = (1.0 * (res_lbl > .5))*.5 + .5 hq = hq * res_lbl_mask torchvision.utils.save_image(hq, os.path.join( classifier.dataset_dir, "%i.png" % (step,))) step += 1