import os import torch import numpy as np import torchaudio import torchvision from tqdm import tqdm from models.audio.music.tfdpc_v5 import TransformerDiffusionWithPointConditioning from utils.music_utils import get_cheater_decoder, get_mel2wav_v3_model from utils.util import load_audio from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, denormalize_mel, pixel_shuffle_1d from trainer.injectors.audio_injectors import MusicCheaterLatentInjector from models.diffusion.respace import SpacedDiffusion from models.diffusion.respace import space_timesteps from models.diffusion.gaussian_diffusion import get_named_beta_schedule def join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir): with torch.no_grad(): spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True, 'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda() cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda() """ # Original model model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024, contraction_dim=512, num_heads=8, num_layers=12, dropout=0, use_fp16=False, unconditioned_percentage=0, time_proj=True).eval().cuda() model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v5/models/206000_generator_ema.pth')) diffusion_type = 'linear' """ model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024, contraction_dim=512, num_heads=8, num_layers=32, dropout=0, use_fp16=False, unconditioned_percentage=0, time_proj=False, new_cond=True, regularization=False).eval().cuda() model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v5_cosine_40_lyr/models/40000_generator_ema.pth')) diffusion_type = 'cosine' diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [256]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_type, 4000), conditioning_free=True, conditioning_free_k=1) clip1 = load_audio(clip1, 22050).cuda() clip1_mel = spec_fn({'in': clip1.unsqueeze(0)})['out'] clip1_cheater = cheater_encoder({'in': clip1_mel})['out'] clip1_leadin = clip1_cheater[:,:,-60:] clip1_cheater = clip1_cheater[:,:,:-60] clip2 = load_audio(clip2, 22050).cuda() clip2_mel = spec_fn({'in': clip2.unsqueeze(0)})['out'] clip2_cheater = cheater_encoder({'in': clip2_mel})['out'] clip2_leadin = clip2_cheater[:,:,:60] clip2_cheater = clip2_cheater[:,:,60:] inp = torch.cat([clip1_leadin, torch.zeros(1,256,240, device='cuda'), clip2_leadin], dim=-1) mask = torch.ones_like(inp) mask[:,:,60:-60] = 0 gen_cheater = diffuser.ddim_sample_loop_with_guidance(model, inp, mask, # causal=True, causal_slope=4, model_kwargs={'cond_left': clip1_cheater, 'cond_right': clip2_cheater}) cheater_to_mel = get_cheater_decoder().diff.cuda() cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [64]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), conditioning_free=True, conditioning_free_k=1) m2w = get_mel2wav_v3_model().cuda() spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), conditioning_free=True, conditioning_free_k=1) MAX_CONTEXT = 30 * 22050 // 4096 chunks = torch.split(gen_cheater, MAX_CONTEXT, dim=-1) gen_wavs = [] for i, chunk_cheater in enumerate(tqdm(chunks)): gen_mel = cheater_decoder_diffuser.ddim_sample_loop(cheater_to_mel, (1,256,chunk_cheater.shape[-1]*16), progress=True, model_kwargs={'codes': chunk_cheater.permute(0,2,1)}) torchvision.utils.save_image((gen_mel + 1)/2, f'{results_dir}/mel_{i}.png') gen_mel_denorm = denormalize_mel(gen_mel) output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16) wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, progress=True, model_kwargs={'codes': gen_mel_denorm}) gen_wavs.append(pixel_shuffle_1d(wav, 16)) gen_wav = torch.cat(gen_wavs, dim=-1) torchaudio.save(f'{results_dir}/out.wav', gen_wav.squeeze(1).cpu(), 22050) if __name__ == '__main__': results_dir = '../results/audio_joiner' #clip1 = 'Y:\\sources\\music\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\2. Our Demons (feat. Aja Volkman).mp3' clip1 = 'Y:\\separated\\bt-music-5\\[2002] Gutterflower\\02 - Think About Me\\00000\\no_vocals.wav' clip1_cut = 35 # Seconds #clip2 = 'Y:\\sources\\music\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\9. Carry The Sun.mp3' clip2 = 'Y:\\separated\\bt-music-5\\[2002] Gutterflower\\02 - Think About Me\\00003\\no_vocals.wav' clip2_cut = 1 mix_time = 10 os.makedirs(results_dir, exist_ok=True) join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir)