forked from mrq/DL-Art-School
197 lines
7.4 KiB
Python
197 lines
7.4 KiB
Python
from random import random
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import einsum, distributed
|
|
from torch.distributed import get_world_size
|
|
|
|
from models.arch_util import AttentionBlock
|
|
from models.lucidrains.x_transformers import ContinuousTransformerWrapper, Encoder
|
|
from trainer.networks import register_model
|
|
from utils.util import opt_get, checkpoint
|
|
import bitsandbytes as bnb
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def masked_mean(t, mask):
|
|
t = t.masked_fill(~mask, 0.)
|
|
return t.sum(dim = 1) / mask.sum(dim = 1)
|
|
|
|
|
|
class CollapsingTransformer(nn.Module):
|
|
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
|
|
super().__init__()
|
|
self.transformer = ContinuousTransformerWrapper(
|
|
max_seq_len=-1,
|
|
use_pos_emb=False,
|
|
attn_layers=Encoder(
|
|
dim=model_dim,
|
|
depth=depth,
|
|
heads=heads,
|
|
ff_dropout=dropout,
|
|
ff_mult=1,
|
|
attn_dropout=dropout,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_pos_emb=True,
|
|
**encoder_kwargs,
|
|
))
|
|
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
|
|
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
|
|
nn.Conv1d(output_dims, output_dims, 1))
|
|
self.mask_percentage = mask_percentage
|
|
|
|
def forward(self, x, **transformer_kwargs):
|
|
h = self.transformer(x, **transformer_kwargs)
|
|
h = h.permute(0,2,1)
|
|
h = checkpoint(self.pre_combiner, h).permute(0,2,1)
|
|
if self.training:
|
|
mask = torch.rand_like(h.float()) > self.mask_percentage
|
|
else:
|
|
mask = torch.ones_like(h.float()).bool()
|
|
return masked_mean(h, mask)
|
|
|
|
|
|
class ConvFormatEmbedding(nn.Module):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__()
|
|
# nn.Embedding
|
|
self.emb = bnb.nn.StableEmbedding(*args, **kwargs)
|
|
|
|
def forward(self, x):
|
|
y = self.emb(x)
|
|
return y.permute(0,2,1)
|
|
|
|
|
|
class CLVP(nn.Module):
|
|
"""
|
|
Contrastic Language-Voice Pretraining model for generating embedding that can be used to associate text and
|
|
speech clips.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_dim=512,
|
|
transformer_heads=8,
|
|
dropout=.1,
|
|
num_text_tokens=256,
|
|
text_enc_depth=6,
|
|
text_mask_percentage=0,
|
|
conditioning_enc_depth=4,
|
|
mask_conditioning_percentage=0.5,
|
|
mel_channels=80,
|
|
mel_codes=None,
|
|
speech_enc_depth=6,
|
|
speech_mask_percentage=0,
|
|
latent_multiplier=4,
|
|
distributed_collect=False,
|
|
):
|
|
super().__init__()
|
|
latent_dim = latent_multiplier*model_dim
|
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
|
|
|
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
|
|
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
|
|
self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim*2, transformer_heads, dropout, conditioning_enc_depth, 0)
|
|
self.masked_conditioning_latent = nn.Parameter(torch.randn(1,model_dim*2), requires_grad=True)
|
|
self.mask_conditioning_percentage = mask_conditioning_percentage
|
|
|
|
# nn.Embedding
|
|
self.text_emb = bnb.nn.StableEmbedding(num_text_tokens, model_dim)
|
|
self.text_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, text_enc_depth, text_mask_percentage, use_rms_scaleshift_norm=True)
|
|
self.to_text_latent = bnb.nn.Linear8bitLt(latent_dim, latent_dim, bias=False)
|
|
self.distributed_collect = distributed_collect
|
|
|
|
if mel_codes is None:
|
|
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
|
|
else:
|
|
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
|
|
self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
|
|
self.to_speech_latent = bnb.nn.Linear8bitLt(latent_dim, latent_dim, bias=False)
|
|
|
|
def get_grad_norm_parameter_groups(self):
|
|
return {
|
|
'conditioning': list(self.conditioning_transformer.parameters()),
|
|
'text': list(self.text_transformer.parameters()),
|
|
'speech': list(self.speech_transformer.parameters()),
|
|
}
|
|
|
|
def forward(
|
|
self,
|
|
text,
|
|
mel_input,
|
|
mel_cond,
|
|
return_loss=False
|
|
):
|
|
device = text.device
|
|
|
|
text_emb = self.text_emb(text)
|
|
speech_emb = self.speech_emb(mel_input).permute(0,2,1)
|
|
|
|
unused_params = []
|
|
if random() < self.mask_conditioning_percentage:
|
|
enc_cond = self.masked_conditioning_latent
|
|
unused_params.extend(list(self.cond_emb.parameters()) + list(self.conditioning_transformer.parameters()))
|
|
else:
|
|
cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
|
|
enc_cond = self.conditioning_transformer(cond_emb)
|
|
unused_params.append(self.masked_conditioning_latent)
|
|
enc_text = self.text_transformer(text_emb, norm_scale_shift_inp=enc_cond)
|
|
enc_speech = self.speech_transformer(speech_emb)
|
|
|
|
text_latents = self.to_text_latent(enc_text)
|
|
speech_latents = self.to_speech_latent(enc_speech)
|
|
|
|
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
|
|
temp = self.temperature.exp()
|
|
|
|
if self.distributed_collect:
|
|
collective = [torch.zeros_like(text_latents) for _ in range(torch.distributed.get_world_size())]
|
|
torch.all_gather(collective, text_latents)
|
|
text_latents = torch.cat(collective, dim=0)
|
|
collective = [torch.zeros_like(speech_latents) for _ in range(torch.distributed.get_world_size())]
|
|
torch.all_gather(collective, speech_latents)
|
|
speech_latents = torch.cat(collective, dim=0)
|
|
|
|
if not return_loss:
|
|
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
|
|
return sim
|
|
|
|
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
|
|
labels = torch.arange(text_latents.shape[0], device=device)
|
|
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
|
|
|
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
|
extraneous_addition = 0
|
|
for p in unused_params:
|
|
extraneous_addition = extraneous_addition + p.mean()
|
|
loss = loss + extraneous_addition * 0
|
|
|
|
return loss
|
|
|
|
|
|
@register_model
|
|
def register_clvp(opt_net, opt):
|
|
return CLVP(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
clvp = CLVP()
|
|
clvp(torch.randint(0,256,(2,120)),
|
|
torch.randn(2,80,100),
|
|
torch.randn(2,80,95),
|
|
return_loss=True)
|
|
nonloss = clvp(torch.randint(0,256,(2,120)),
|
|
torch.randn(2,80,100),
|
|
torch.randn(2,80,95),
|
|
return_loss=False)
|
|
clvp = CLVP(mel_codes=8192)
|
|
clvp(torch.randint(0,256,(2,120)),
|
|
torch.randint(0,8192,(2,150)),
|
|
torch.randn(2,80,95),
|
|
return_loss=True)
|
|
print(nonloss.shape) |