forked from mrq/DL-Art-School
38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
import os
|
|
|
|
import torch
|
|
import os.path as osp
|
|
import torchvision
|
|
from torch.utils.data import DataLoader
|
|
|
|
import models.eval.evaluator as evaluator
|
|
from pytorch_fid import fid_score
|
|
|
|
|
|
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
|
|
from data.image_folder_dataset import ImageFolderDataset
|
|
from models.archs.srflow_orig.flow import GaussianDiag
|
|
|
|
|
|
class FlowGaussianNll(evaluator.Evaluator):
|
|
def __init__(self, model, opt_eval, env):
|
|
super().__init__(model, opt_eval, env)
|
|
self.batch_sz = opt_eval['batch_size']
|
|
self.dataset = ImageFolderDataset(opt_eval['dataset'])
|
|
self.dataloader = DataLoader(self.dataset, self.batch_sz)
|
|
|
|
def perform_eval(self):
|
|
total_zs = 0
|
|
z_loss = 0
|
|
with torch.no_grad():
|
|
for batch in self.dataloader:
|
|
z, _, _ = self.model(gt=batch['GT'],
|
|
lr=batch['LQ'],
|
|
epses=[],
|
|
reverse=False,
|
|
add_gt_noise=False)
|
|
for z_ in z:
|
|
z_loss += GaussianDiag.logp(None, None, z_).mean()
|
|
total_zs += 1
|
|
return {"gaussian_diff": z_loss / total_zs}
|