forked from mrq/DL-Art-School
164 lines
7.5 KiB
Python
164 lines
7.5 KiB
Python
import random
|
|
from time import time
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
|
|
|
from models.arch_util import AttentionBlock
|
|
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
|
|
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
|
from models.tacotron2.text import symbols
|
|
from trainer.networks import register_model
|
|
from utils.util import opt_get
|
|
|
|
|
|
class ConditioningEncoder(nn.Module):
|
|
def __init__(self,
|
|
spec_dim,
|
|
embedding_dim,
|
|
attn_blocks=4,
|
|
num_attn_heads=4,
|
|
do_checkpointing=False):
|
|
super().__init__()
|
|
attn = []
|
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
|
for a in range(attn_blocks):
|
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
|
self.attn = nn.Sequential(*attn)
|
|
self.dim = embedding_dim
|
|
self.do_checkpointing = do_checkpointing
|
|
|
|
def forward(self, x):
|
|
h = self.init(x)
|
|
h = self.attn(h)
|
|
return h[:, :, 0]
|
|
|
|
|
|
class GptTtsHf(nn.Module):
|
|
NUMBER_TEXT_TOKENS = len(symbols)+1
|
|
START_TEXT_TOKEN = len(symbols)
|
|
STOP_TEXT_TOKEN = 0
|
|
NUMBER_MEL_CODES = 8194
|
|
START_MEL_TOKEN = 8192
|
|
STOP_MEL_TOKEN = 8193
|
|
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3,
|
|
checkpointing=True, mel_length_compression=1024, max_conditioning_length=60):
|
|
super().__init__()
|
|
self.max_mel_tokens = max_mel_tokens
|
|
self.max_symbols_per_phrase = max_symbols_per_phrase
|
|
self.model_dim = model_dim
|
|
self.max_conditioning_inputs = max_conditioning_inputs
|
|
self.mel_length_compression = mel_length_compression
|
|
self.conditioning_encoder = ConditioningEncoder(80, model_dim)
|
|
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
|
|
seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens
|
|
self.gpt_config = GPT2Config(vocab_size=self.NUMBER_MEL_CODES,
|
|
n_positions=seq_length,
|
|
n_ctx=seq_length,
|
|
n_embd=model_dim,
|
|
n_layer=layers,
|
|
n_head=heads,
|
|
gradient_checkpointing=checkpointing,
|
|
use_cache=not checkpointing)
|
|
self.gpt = GPT2Model(self.gpt_config)
|
|
self.final_norm = nn.LayerNorm(model_dim)
|
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
|
self.mel_head = nn.Linear(model_dim, self.NUMBER_MEL_CODES)
|
|
self.max_conditioning_length = max_conditioning_length
|
|
|
|
|
|
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
|
inp = F.pad(input, (1,0), value=start_token)
|
|
tar = F.pad(input, (0,1), value=stop_token)
|
|
return inp, tar
|
|
|
|
def get_logits(self, text_inputs, cond_input, mel_inputs, get_attns=False):
|
|
text_emb = self.text_embedding(text_inputs)
|
|
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
|
|
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
|
|
|
|
emb = torch.cat([text_emb, cond, mel_emb], dim=1)
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
|
if get_attns:
|
|
return gpt_out.attentions
|
|
enc = gpt_out.last_hidden_state
|
|
|
|
text_logits = self.final_norm(enc[:, :text_emb.shape[1]])
|
|
text_logits = self.text_head(text_logits)
|
|
text_logits = text_logits.permute(0,2,1)
|
|
mel_logits = self.final_norm(enc[:, -mel_emb.shape[1]:])
|
|
mel_logits = self.mel_head(mel_logits)
|
|
mel_logits = mel_logits.permute(0,2,1)
|
|
|
|
return text_logits, mel_logits
|
|
|
|
def forward(self, text_inputs, cond_input, mel_targets, wav_lengths, return_attentions=False):
|
|
"""
|
|
Forward pass
|
|
text_inputs: long tensor, (b,t)
|
|
cond_inputs: MEL float tensor, (b,c,80,s)
|
|
mel_targets: long tensor, (b,m)
|
|
mel_lengths: long tensor, (b,)
|
|
"""
|
|
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
|
mel_lengths = wav_lengths // self.mel_length_compression
|
|
for b in range(len(mel_lengths)):
|
|
if mel_lengths[b] < mel_targets.shape[-1]:
|
|
mel_targets[b, mel_lengths[b]:] = self.STOP_MEL_TOKEN
|
|
|
|
# Randomly permute the conditioning spectrogram, to destroy any structure present.
|
|
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])]
|
|
if cond_input.shape[-1] > self.max_conditioning_length:
|
|
cond_input = cond_input[:,:,:self.max_conditioning_length]
|
|
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
|
|
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_targets, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
|
|
text_logits, mel_logits = self.get_logits(text_inputs, cond_input, mel_inputs, get_attns=return_attentions)
|
|
if return_attentions:
|
|
return mel_logits
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
|
return loss_text.mean(), loss_mel.mean(), mel_logits
|
|
|
|
def inference(self, text_inputs, cond_input, **hf_generate_kwargs):
|
|
if not hasattr(self, 'inference_model'):
|
|
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, None, self.final_norm, self.mel_head)
|
|
|
|
text_inputs = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_inputs.shape[1]), value=self.STOP_TEXT_TOKEN)
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
|
|
text_emb = self.text_embedding(text_inputs)
|
|
|
|
# Randomly permute the conditioning spectrogram, to destroy any structure present.
|
|
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])]
|
|
if cond_input.shape[-1] > self.max_conditioning_length:
|
|
cond_input = cond_input[:,:,:self.max_conditioning_length]
|
|
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
|
|
|
|
emb = torch.cat([text_emb, cond], dim=1)
|
|
self.inference_model.store_mel_emb(emb)
|
|
|
|
fake_inputs = torch.full((emb.shape[0],emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
|
fake_inputs[:,-1] = self.START_MEL_TOKEN
|
|
|
|
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.START_MEL_TOKEN, pad_token_id=self.STOP_MEL_TOKEN, eos_token_id=self.STOP_MEL_TOKEN,
|
|
max_length=emb.shape[1]+self.max_mel_tokens, **hf_generate_kwargs)
|
|
return gen[:, fake_inputs.shape[1]:]
|
|
|
|
|
|
@register_model
|
|
def register_gpt_tts_hf(opt_net, opt):
|
|
return GptTtsHf(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gpt = GptTtsHf(model_dim=1024, heads=16)
|
|
l = gpt(torch.randint(high=len(symbols), size=(2,200)),
|
|
torch.arange(0, 80, 1, dtype=torch.float).view(1,80,1).repeat(2,1,800),
|
|
torch.randint(high=8192, size=(2,250)),
|
|
torch.tensor([150*256,195*256]))
|