DL-Art-School/codes/models/ExtensibleTrainer.py
2020-09-19 10:05:25 -06:00

309 lines
13 KiB
Python

import logging
import os
import torch
from apex import amp
from torch.nn.parallel import DataParallel, DistributedDataParallel
import torch.nn as nn
import models.lr_scheduler as lr_scheduler
import models.networks as networks
from models.base_model import BaseModel
from models.steps.steps import ConfigurableStep
from models.experiments.experiments import get_experiment_for_name
import torchvision.utils as utils
logger = logging.getLogger('base')
class ExtensibleTrainer(BaseModel):
def __init__(self, opt):
super(ExtensibleTrainer, self).__init__(opt)
if opt['dist']:
self.rank = torch.distributed.get_rank()
else:
self.rank = -1 # non dist training
train_opt = opt['train']
# env is used as a global state to store things that subcomponents might need.
self.env = {'device': self.device,
'rank': self.rank,
'opt': opt,
'step': 0}
self.mega_batch_factor = 1
if self.is_train:
self.mega_batch_factor = train_opt['mega_batch_factor']
self.env['mega_batch_factor'] = self.mega_batch_factor
self.netsG = {}
self.netsD = {}
# Note that this is on the chopping block. It should be integrated into an injection point.
self.netF = networks.define_F().to(self.device) # Used to compute feature loss.
for name, net in opt['networks'].items():
# Trainable is a required parameter, but the default is simply true. Set it here.
if 'trainable' not in net.keys():
net['trainable'] = True
if net['type'] == 'generator':
new_net = networks.define_G(net, None, opt['scale']).to(self.device)
self.netsG[name] = new_net
elif net['type'] == 'discriminator':
new_net = networks.define_D_net(net, opt['datasets']['train']['target_size']).to(self.device)
self.netsD[name] = new_net
else:
raise NotImplementedError("Can only handle generators and discriminators")
if not net['trainable']:
new_net.eval()
# Initialize the train/eval steps
self.step_names = []
self.steps = []
for step_name, step in opt['steps'].items():
step = ConfigurableStep(step, self.env)
self.step_names.append(step_name) # This could be an OrderedDict, but it's a PITA to integrate with AMP below.
self.steps.append(step)
# step.define_optimizers() relies on the networks being placed in the env, so put them there. Even though
# they aren't wrapped yet.
self.env['generators'] = self.netsG
self.env['discriminators'] = self.netsD
# Define the optimizers from the steps
for s in self.steps:
s.define_optimizers()
self.optimizers.extend(s.get_optimizers())
if self.is_train:
# Find the optimizers that are using the default scheduler, then build them.
def_opt = []
for s in self.steps:
def_opt.extend(s.get_optimizers_with_default_scheduler())
self.schedulers = lr_scheduler.get_scheduler_for_name(train_opt['default_lr_scheme'], def_opt, train_opt)
else:
self.schedulers = []
# Initialize amp.
total_nets = [g for g in self.netsG.values()] + [d for d in self.netsD.values()]
if 'amp_opt_level' in opt.keys():
self.env['amp'] = True
amp_nets, amp_opts = amp.initialize(total_nets + [self.netF] + self.steps,
self.optimizers, opt_level=opt['amp_opt_level'], num_losses=len(opt['steps']))
else:
amp_nets = total_nets + [self.netF] + self.steps
amp_opts = self.optimizers
self.env['amp'] = False
# Unwrap steps & netF & optimizers
self.netF = amp_nets[len(total_nets)]
assert(len(self.steps) == len(amp_nets[len(total_nets)+1:]))
self.steps = amp_nets[len(total_nets)+1:]
amp_nets = amp_nets[:len(total_nets)]
self.optimizers = amp_opts
# DataParallel
dnets = []
for anet in amp_nets:
if opt['dist']:
dnet = DistributedDataParallel(anet,
device_ids=[torch.cuda.current_device()],
find_unused_parameters=True)
else:
dnet = DataParallel(anet)
if self.is_train:
dnet.train()
else:
dnet.eval()
dnets.append(dnet)
if not opt['dist']:
self.netF = DataParallel(self.netF)
# Backpush the wrapped networks into the network dicts..
self.networks = {}
found = 0
for dnet in dnets:
for net_dict in [self.netsD, self.netsG]:
for k, v in net_dict.items():
if v == dnet.module:
net_dict[k] = dnet
self.networks[k] = dnet
found += 1
assert found == len(self.netsG) + len(self.netsD)
# Replace the env networks with the wrapped networks
self.env['generators'] = self.netsG
self.env['discriminators'] = self.netsD
self.print_network() # print network
self.load() # load G and D if needed
# Load experiments
self.experiments = []
if 'experiments' in opt.keys():
self.experiments = [get_experiment_for_name(e) for e in op['experiments']]
# Setting this to false triggers SRGAN to call the models update_model() function on the first iteration.
self.updated = True
def feed_data(self, data, need_GT=True):
self.eval_state = {}
for o in self.optimizers:
o.zero_grad()
torch.cuda.empty_cache()
self.lq = torch.chunk(data['LQ'].to(self.device), chunks=self.mega_batch_factor, dim=0)
if need_GT:
self.hq = [t.to(self.device) for t in torch.chunk(data['GT'], chunks=self.mega_batch_factor, dim=0)]
input_ref = data['ref'] if 'ref' in data.keys() else data['GT']
self.ref = [t.to(self.device) for t in torch.chunk(input_ref, chunks=self.mega_batch_factor, dim=0)]
else:
self.hq = self.lq
self.ref = self.lq
self.dstate = {'lq': self.lq, 'hq': self.hq, 'ref': self.ref}
for k, v in data.items():
if k not in ['LQ', 'ref', 'GT'] and isinstance(v, torch.Tensor):
self.dstate[k] = [t.to(self.device) for t in torch.chunk(v, chunks=self.mega_batch_factor, dim=0)]
def optimize_parameters(self, step):
self.env['step'] = step
# Some models need to make parametric adjustments per-step. Do that here.
for net in self.networks.values():
if hasattr(net.module, "update_for_step"):
net.module.update_for_step(step, os.path.join(self.opt['path']['models'], ".."))
# Iterate through the steps, performing them one at a time.
state = self.dstate
for step_num, s in enumerate(self.steps):
# Skip steps if mod_step doesn't line up.
if 'mod_step' in s.opt.keys() and step % s.opt['mod_step'] != 0:
continue
# Only set requires_grad=True for the network being trained.
nets_to_train = s.get_networks_trained()
enabled = 0
for name, net in self.networks.items():
net_enabled = name in nets_to_train
if net_enabled:
enabled += 1
for p in net.parameters():
if p.dtype != torch.int64 and p.dtype != torch.bool:
p.requires_grad = net_enabled
else:
p.requires_grad = False
assert enabled == len(nets_to_train)
# Update experiments
[e.before_step(self.opt, self.step_names[step_num], self.env, nets_to_train, state) for e in self.experiments]
for o in s.get_optimizers():
o.zero_grad()
# Now do a forward and backward pass for each gradient accumulation step.
new_states = {}
for m in range(self.mega_batch_factor):
ns = s.do_forward_backward(state, m, step_num)
for k, v in ns.items():
if k not in new_states.keys():
new_states[k] = [v]
else:
new_states[k].append(v)
# Push the detached new state tensors into the state map for use with the next step.
for k, v in new_states.items():
# State is immutable to reduce complexity. Overwriting existing state keys is not supported.
assert k not in state.keys()
state[k] = v
# And finally perform optimization.
[e.before_optimize(state) for e in self.experiments]
s.do_step()
[e.after_optimize(state) for e in self.experiments]
# Record visual outputs for usage in debugging and testing.
if 'visuals' in self.opt['logger'].keys():
sample_save_path = os.path.join(self.opt['path']['models'], "..", "visual_dbg")
for v in self.opt['logger']['visuals']:
if step % self.opt['logger']['visual_debug_rate'] == 0:
for i, dbgv in enumerate(state[v]):
if dbgv.shape[1] > 3:
dbgv = dbgv[:,:3,:,:]
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
utils.save_image(dbgv, os.path.join(sample_save_path, v, "%05i_%02i.png" % (step, i)))
def compute_fea_loss(self, real, fake):
with torch.no_grad():
logits_real = self.netF(real)
logits_fake = self.netF(fake)
return nn.L1Loss().to(self.device)(logits_fake, logits_real)
def test(self):
for net in self.netsG.values():
net.eval()
with torch.no_grad():
# Iterate through the steps, performing them one at a time.
state = self.dstate
for step_num, s in enumerate(self.steps):
ns = s.do_forward_backward(state, 0, step_num, train=False)
for k, v in ns.items():
state[k] = [v]
self.eval_state = {}
for k, v in state.items():
self.eval_state[k] = [s.detach().cpu() if isinstance(s, torch.Tensor) else s for s in v]
# For backwards compatibility..
self.fake_H = self.eval_state[self.opt['eval']['output_state']][0].float().cpu()
for net in self.netsG.values():
net.train()
# Fetches a summary of the log.
def get_current_log(self, step):
log = {}
for s in self.steps:
log.update(s.get_metrics())
for e in self.experiments:
log.update(e.get_log_data())
# Some generators can do their own metric logging.
for net_name, net in self.networks.items():
if hasattr(net.module, "get_debug_values"):
log.update(net.module.get_debug_values(step, net_name))
return log
def get_current_visuals(self, need_GT=True):
# Conforms to an archaic format from MMSR.
return {'LQ': self.eval_state['lq'][0].float().cpu(),
'GT': self.eval_state['hq'][0].float().cpu(),
'rlt': self.eval_state[self.opt['eval']['output_state']][0].float().cpu()}
def print_network(self):
for name, net in self.networks.items():
s, n = self.get_network_description(net)
net_struc_str = '{}'.format(net.__class__.__name__)
if self.rank <= 0:
logger.info('Network {} structure: {}, with parameters: {:,d}'.format(name, net_struc_str, n))
logger.info(s)
def load(self):
for netdict in [self.netsG, self.netsD]:
for name, net in netdict.items():
load_path = self.opt['path']['pretrain_model_%s' % (name,)]
if load_path is not None:
logger.info('Loading model for [%s]' % (load_path))
self.load_network(load_path, net, self.opt['path']['strict_load'])
def save(self, iter_step):
for name, net in self.networks.items():
# Don't save non-trainable networks.
if self.opt['networks'][name]['trainable']:
self.save_network(net, name, iter_step)
def force_restore_swapout(self):
# Legacy method. Do nothing.
pass