forked from mrq/DL-Art-School
92 lines
2.9 KiB
Python
92 lines
2.9 KiB
Python
# Original source: https://github.com/SeanNaren/deepspeech.pytorch/blob/master/deepspeech_pytorch/validation.py
|
|
import os
|
|
|
|
import Levenshtein as Lev
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
|
from models.tacotron2.text import cleaners
|
|
|
|
|
|
def clean_text(text):
|
|
for name in ['english_cleaners']:
|
|
cleaner = getattr(cleaners, name)
|
|
if not cleaner:
|
|
raise Exception('Unknown cleaner: %s' % name)
|
|
text = cleaner(text)
|
|
return text
|
|
|
|
|
|
# Converts text to all-uppercase and separates punctuation from words.
|
|
def normalize_text(text):
|
|
text = text.upper()
|
|
for punc in ['.', ',', ':', ';']:
|
|
text = text.replace(punc, f' {punc}')
|
|
return text.strip()
|
|
|
|
|
|
class WordErrorRate:
|
|
def calculate_metric(self, transcript, reference):
|
|
wer_inst = self.wer_calc(transcript, reference)
|
|
self.wer += wer_inst
|
|
self.n_tokens += len(reference.split())
|
|
|
|
def compute(self):
|
|
wer = float(self.wer) / self.n_tokens
|
|
return wer.item() * 100
|
|
|
|
def wer_calc(self, s1, s2):
|
|
"""
|
|
Computes the Word Error Rate, defined as the edit distance between the
|
|
two provided sentences after tokenizing to words.
|
|
Arguments:
|
|
s1 (string): space-separated sentence
|
|
s2 (string): space-separated sentence
|
|
"""
|
|
|
|
# build mapping of words to integers
|
|
b = set(s1.split() + s2.split())
|
|
word2char = dict(zip(b, range(len(b))))
|
|
|
|
# map the words to a char array (Levenshtein packages only accepts
|
|
# strings)
|
|
w1 = [chr(word2char[w]) for w in s1.split()]
|
|
w2 = [chr(word2char[w]) for w in s2.split()]
|
|
|
|
return Lev.distance(''.join(w1), ''.join(w2))
|
|
|
|
|
|
def load_truths(file):
|
|
niltok = VoiceBpeTokenizer(None)
|
|
out = {}
|
|
with open(file, 'r', encoding='utf-8') as f:
|
|
for line in f.readline():
|
|
spl = line.split('|')
|
|
if len(spl) != 2:
|
|
continue
|
|
path, truth = spl
|
|
path = path.replace('wav/', '')
|
|
truth = niltok.preprocess_text(truth) # This may or may not be considered a "cheat", but the model is only trained on preprocessed text.
|
|
out[path] = truth
|
|
return out
|
|
|
|
|
|
if __name__ == '__main__':
|
|
inference_tsv = 'results.tsv'
|
|
libri_base = '/h/bigasr_dataset/librispeech/test_clean/test_clean.txt'
|
|
|
|
# Pre-process truth values
|
|
truths = load_truths(libri_base)
|
|
|
|
wer = WordErrorRate()
|
|
wer_scores = []
|
|
with open(inference_tsv, 'r') as tsv_file:
|
|
tsv = tsv_file.read().splitlines()
|
|
for line in tqdm(tsv):
|
|
sentence_pred, wav = line.split('\t')
|
|
sentence_pred = normalize_text(sentence_pred)
|
|
sentence_real = normalize_text(truths[wav])
|
|
wer_scores.append(wer.wer_calc(sentence_real, sentence_pred))
|
|
print(f"WER: {torch.tensor(wer_scores, dtype=torch.float).mean()}")
|