DL-Art-School/codes/models/vqvae/vqvae_no_conv_transpose_hardswitched_lambda.py
2021-02-02 20:41:24 -07:00

294 lines
10 KiB
Python

import os
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
import torch.distributed as distributed
from models.switched_conv.switched_conv_hard_routing import SwitchedConvHardRouting, \
convert_conv_net_state_dict_to_switched_conv
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
class UpsampleConv(nn.Module):
def __init__(self, in_filters, out_filters, breadth, kernel_size, padding):
super().__init__()
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth, include_coupler=True, coupler_mode='standard', coupler_dim_in=in_filters, dropout_rate=0.4)
def forward(self, x):
up = torch.nn.functional.interpolate(x, scale_factor=2)
return self.conv(up)
class Quantize(nn.Module):
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
super().__init__()
self.dim = dim
self.n_embed = n_embed
self.decay = decay
self.eps = eps
embed = torch.randn(dim, n_embed)
self.register_buffer("embed", embed)
self.register_buffer("cluster_size", torch.zeros(n_embed))
self.register_buffer("embed_avg", embed.clone())
def forward(self, input):
flatten = input.reshape(-1, self.dim)
dist = (
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ self.embed
+ self.embed.pow(2).sum(0, keepdim=True)
)
_, embed_ind = (-dist).max(1)
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
embed_ind = embed_ind.view(*input.shape[:-1])
quantize = self.embed_code(embed_ind)
if self.training:
embed_onehot_sum = embed_onehot.sum(0)
embed_sum = flatten.transpose(0, 1) @ embed_onehot
if distributed.is_initialized() and distributed.get_world_size() > 1:
distributed.all_reduce(embed_onehot_sum)
distributed.all_reduce(embed_sum)
self.cluster_size.data.mul_(self.decay).add_(
embed_onehot_sum, alpha=1 - self.decay
)
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
n = self.cluster_size.sum()
cluster_size = (
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
self.embed.data.copy_(embed_normalized)
diff = (quantize.detach() - input).pow(2).mean()
quantize = input + (quantize - input).detach()
return quantize, diff, embed_ind
def embed_code(self, embed_id):
return F.embedding(embed_id, self.embed.transpose(0, 1))
class ResBlock(nn.Module):
def __init__(self, in_channel, channel, breadth):
super().__init__()
self.conv = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv2d(in_channel, channel, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, in_channel, 1),
)
def forward(self, input):
out = self.conv(input)
out += input
return out
class Encoder(nn.Module):
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, breadth):
super().__init__()
if stride == 4:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.ReLU(inplace=True),
SwitchedConvHardRouting(channel // 2, channel, 5, breadth, stride=2, include_coupler=True, coupler_mode='standard', coupler_dim_in=channel // 2, dropout_rate=0.4),
nn.ReLU(inplace=True),
SwitchedConvHardRouting(channel, channel, 3, breadth, include_coupler=True, coupler_mode='standard', coupler_dim_in=channel, dropout_rate=0.4),
]
elif stride == 2:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.ReLU(inplace=True),
SwitchedConvHardRouting(channel // 2, channel, 3, breadth, include_coupler=True, coupler_mode='standard', coupler_dim_in=channel // 2, dropout_rate=0.4),
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel, breadth))
blocks.append(nn.ReLU(inplace=True))
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class Decoder(nn.Module):
def __init__(
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, breadth
):
super().__init__()
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth, include_coupler=True, coupler_mode='standard', coupler_dim_in=in_channel, dropout_rate=0.4)]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel, breadth))
blocks.append(nn.ReLU(inplace=True))
if stride == 4:
blocks.extend(
[
UpsampleConv(channel, channel // 2, breadth, 5, padding=2),
nn.ReLU(inplace=True),
UpsampleConv(
channel // 2, out_channel, breadth, 5, padding=2
),
]
)
elif stride == 2:
blocks.append(
UpsampleConv(channel, out_channel, breadth, 5, padding=2)
)
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class VQVAE(nn.Module):
def __init__(
self,
in_channel=3,
channel=128,
n_res_block=2,
n_res_channel=32,
codebook_dim=64,
codebook_size=512,
decay=0.99,
breadth=8,
):
super().__init__()
self.breadth = breadth
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth)
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth)
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
self.quantize_t = Quantize(codebook_dim, codebook_size)
self.dec_t = Decoder(
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2, breadth=breadth
)
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
self.quantize_b = Quantize(codebook_dim, codebook_size*2)
self.upsample_t = UpsampleConv(
codebook_dim, codebook_dim, breadth, 5, padding=2
)
self.dec = Decoder(
codebook_dim + codebook_dim,
in_channel,
channel,
n_res_block,
n_res_channel,
stride=4,
breadth=breadth
)
def forward(self, input):
quant_t, quant_b, diff, _, _ = self.encode(input)
dec = self.decode(quant_t, quant_b)
return dec, diff
def save_attention_to_image_rgb(self, output_file, attention_out, attention_size, cmap_discrete_name='viridis'):
from matplotlib import cm
magnitude, indices = torch.topk(attention_out, 3, dim=1)
indices = indices.cpu()
colormap = cm.get_cmap(cmap_discrete_name, attention_size)
img = torch.tensor(colormap(indices[:, 0, :, :].detach().numpy())) # TODO: use other k's
img = img.permute((0, 3, 1, 2))
torchvision.utils.save_image(img, output_file)
def visual_dbg(self, step, path):
convs = [self.dec.blocks[-1].conv, self.dec_t.blocks[-1].conv, self.enc_b.blocks[-4], self.enc_t.blocks[-4]]
for i, c in enumerate(convs):
self.save_attention_to_image_rgb(os.path.join(path, "%i_selector_%i.png" % (step, i+1)), c.last_select, self.breadth)
def get_debug_values(self, step, __):
switched_convs = [('enc_b_blk2', self.enc_b.blocks[2]),
('enc_b_blk4', self.enc_b.blocks[4]),
('enc_t_blk2', self.enc_t.blocks[2]),
('dec_t_blk0', self.dec_t.blocks[0]),
('dec_t_blk-1', self.dec_t.blocks[-1].conv),
('dec_blk0', self.dec.blocks[0]),
('dec_blk-1', self.dec.blocks[-1].conv),
('dec_blk-3', self.dec.blocks[-3].conv)]
logs = {}
for name, swc in switched_convs:
logs[f'{name}_histogram_switch_usage'] = swc.latest_masks
return logs
def encode(self, input):
enc_b = checkpoint(self.enc_b, input)
enc_t = checkpoint(self.enc_t, enc_b)
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
quant_t, diff_t, id_t = self.quantize_t(quant_t)
quant_t = quant_t.permute(0, 3, 1, 2)
diff_t = diff_t.unsqueeze(0)
dec_t = checkpoint(self.dec_t, quant_t)
enc_b = torch.cat([dec_t, enc_b], 1)
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
quant_b, diff_b, id_b = self.quantize_b(quant_b)
quant_b = quant_b.permute(0, 3, 1, 2)
diff_b = diff_b.unsqueeze(0)
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
def decode(self, quant_t, quant_b):
upsample_t = self.upsample_t(quant_t)
quant = torch.cat([upsample_t, quant_b], 1)
dec = checkpoint(self.dec, quant)
return dec
def decode_code(self, code_t, code_b):
quant_t = self.quantize_t.embed_code(code_t)
quant_t = quant_t.permute(0, 3, 1, 2)
quant_b = self.quantize_b.embed_code(code_b)
quant_b = quant_b.permute(0, 3, 1, 2)
dec = self.decode(quant_t, quant_b)
return dec
def convert_weights(weights_file):
sd = torch.load(weights_file)
import models.vqvae.vqvae_no_conv_transpose as stdvq
std_model = stdvq.VQVAE()
std_model.load_state_dict(sd)
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 8, ['quantize_conv_t', 'quantize_conv_b',
'enc_b.blocks.0', 'enc_t.blocks.0',
'conv.1', 'conv.3'])
torch.save(nsd, "converted.pth")
@register_model
def register_vqvae_norm_hard_switched_conv_lambda(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
return VQVAE(**kw)
if __name__ == '__main__':
v = VQVAE(breadth=8).cuda()
print(v(torch.randn(1,3,128,128).cuda())[0].shape)
#convert_weights("../../../experiments/50000_generator.pth")