forked from mrq/DL-Art-School
687393de59
Going to extend this a bit more going forwards to support the entire pipeline.
69 lines
2.8 KiB
Python
69 lines
2.8 KiB
Python
|
|
|
|
"""
|
|
Master script that processes all MP3 files found in an input directory. Performs the following operations, per-file:
|
|
1. Splits the file on silence intervals, throwing out all clips that are too short or long.
|
|
2.
|
|
"""
|
|
import argparse
|
|
import functools
|
|
import os
|
|
from multiprocessing.pool import ThreadPool
|
|
|
|
from pydub import AudioSegment
|
|
from pydub.exceptions import CouldntDecodeError
|
|
from pydub.silence import split_on_silence
|
|
from tqdm import tqdm
|
|
|
|
from data.util import find_audio_files
|
|
|
|
|
|
def report_progress(progress_file, file):
|
|
with open(progress_file, 'a', encoding='utf-8') as f:
|
|
f.write(f'{file}\n')
|
|
|
|
|
|
def process_file(file, base_path, output_path, progress_file):
|
|
# Hyper-parameters; feel free to adjust.
|
|
minimum_duration = 4
|
|
maximum_duration = 20
|
|
|
|
# Part 1 is to split a large file into chunks.
|
|
try:
|
|
speech = AudioSegment.from_file(file)
|
|
except CouldntDecodeError as e:
|
|
print(e)
|
|
report_progress(progress_file, file)
|
|
return
|
|
outdir = os.path.join(output_path, f'{os.path.relpath(file, base_path)[:-4]}').replace('.', '').strip()
|
|
os.makedirs(outdir, exist_ok=True)
|
|
chunks = split_on_silence(speech, min_silence_len=600, silence_thresh=-40, seek_step=100, keep_silence=50)
|
|
for i in range(0, len(chunks)):
|
|
if chunks[i].duration_seconds < minimum_duration or chunks[i].duration_seconds > maximum_duration:
|
|
continue
|
|
chunks[i].export(f"{outdir}/{i:05d}.mp3", format='mp3', parameters=["-ac", "1"])
|
|
report_progress(progress_file, file)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-path', type=str, help='Path to search for files', default='Y:\\sources\\big_podcast')
|
|
parser.add_argument('-progress_file', type=str, help='Place to store all files that have already been processed', default='Y:\\sources\\big_podcast\\already_processed.txt')
|
|
parser.add_argument('-output_path', type=str, help='Path for output files', default='Y:\\split\\big_podcast')
|
|
parser.add_argument('-num_threads', type=int, help='Number of concurrent workers processing files.', default=4)
|
|
args = parser.parse_args()
|
|
|
|
processed_files = set()
|
|
if os.path.exists(args.progress_file):
|
|
with open(args.progress_file, 'r', encoding='utf-8') as f:
|
|
for line in f.readlines():
|
|
processed_files.add(line.strip())
|
|
|
|
files = set(find_audio_files(args.path, include_nonwav=True))
|
|
orig_len = len(files)
|
|
files = files - processed_files
|
|
print(f"Found {len(files)} files to process. Total processing is {100*(orig_len-len(files))/orig_len}% complete.")
|
|
|
|
with ThreadPool(args.num_threads) as pool:
|
|
list(tqdm(pool.imap(functools.partial(process_file, output_path=args.output_path, base_path=args.path, progress_file=args.progress_file), files), total=len(files)))
|