forked from mrq/DL-Art-School
124 lines
3.7 KiB
Python
124 lines
3.7 KiB
Python
from functools import partial
|
|
from math import log2
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
def leaky_relu(p=0.2):
|
|
return nn.LeakyReLU(p)
|
|
|
|
|
|
def double_conv(chan_in, chan_out):
|
|
return nn.Sequential(
|
|
nn.Conv2d(chan_in, chan_out, 3, padding=1),
|
|
leaky_relu(),
|
|
nn.Conv2d(chan_out, chan_out, 3, padding=1),
|
|
leaky_relu()
|
|
)
|
|
|
|
|
|
class DownBlock(nn.Module):
|
|
def __init__(self, input_channels, filters, downsample=True):
|
|
super().__init__()
|
|
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1))
|
|
|
|
self.net = double_conv(input_channels, filters)
|
|
self.down = nn.Conv2d(filters, filters, 3, padding = 1, stride = 2) if downsample else None
|
|
|
|
def forward(self, x):
|
|
res = self.conv_res(x)
|
|
x = self.net(x)
|
|
unet_res = x
|
|
|
|
if self.down is not None:
|
|
x = self.down(x)
|
|
|
|
x = x + res
|
|
return x, unet_res
|
|
|
|
|
|
class UpBlock(nn.Module):
|
|
def __init__(self, input_channels, filters):
|
|
super().__init__()
|
|
self.conv_res = nn.ConvTranspose2d(input_channels // 2, filters, 1, stride = 2)
|
|
self.net = double_conv(input_channels, filters)
|
|
self.up = nn.Upsample(scale_factor = 2, mode='bilinear', align_corners=False)
|
|
self.input_channels = input_channels
|
|
self.filters = filters
|
|
|
|
def forward(self, x, res):
|
|
*_, h, w = x.shape
|
|
conv_res = self.conv_res(x, output_size = (h * 2, w * 2))
|
|
x = self.up(x)
|
|
x = torch.cat((x, res), dim=1)
|
|
x = self.net(x)
|
|
x = x + conv_res
|
|
return x
|
|
|
|
|
|
class StyleGan2UnetDiscriminator(nn.Module):
|
|
def __init__(self, image_size, network_capacity = 16, fmap_max = 512, input_filters=3):
|
|
super().__init__()
|
|
num_layers = int(log2(image_size) - 3)
|
|
|
|
blocks = []
|
|
filters = [input_filters] + [(network_capacity) * (2 ** i) for i in range(num_layers + 1)]
|
|
|
|
set_fmap_max = partial(min, fmap_max)
|
|
filters = list(map(set_fmap_max, filters))
|
|
filters[-1] = filters[-2]
|
|
|
|
chan_in_out = list(zip(filters[:-1], filters[1:]))
|
|
chan_in_out = list(map(list, chan_in_out))
|
|
|
|
down_blocks = []
|
|
attn_blocks = []
|
|
|
|
for ind, (in_chan, out_chan) in enumerate(chan_in_out):
|
|
num_layer = ind + 1
|
|
is_not_last = ind != (len(chan_in_out) - 1)
|
|
|
|
block = DownBlock(in_chan, out_chan, downsample = is_not_last)
|
|
down_blocks.append(block)
|
|
|
|
attn_fn = attn_and_ff(out_chan)
|
|
attn_blocks.append(attn_fn)
|
|
|
|
self.down_blocks = nn.ModuleList(down_blocks)
|
|
self.attn_blocks = nn.ModuleList(attn_blocks)
|
|
|
|
last_chan = filters[-1]
|
|
|
|
self.to_logit = nn.Sequential(
|
|
leaky_relu(),
|
|
nn.AvgPool2d(image_size // (2 ** num_layers)),
|
|
Flatten(1),
|
|
nn.Linear(last_chan, 1)
|
|
)
|
|
|
|
self.conv = double_conv(last_chan, last_chan)
|
|
|
|
dec_chan_in_out = chan_in_out[:-1][::-1]
|
|
self.up_blocks = nn.ModuleList(list(map(lambda c: UpBlock(c[1] * 2, c[0]), dec_chan_in_out)))
|
|
self.conv_out = nn.Conv2d(3, 1, 1)
|
|
|
|
def forward(self, x):
|
|
b, *_ = x.shape
|
|
|
|
residuals = []
|
|
|
|
for (down_block, attn_block) in zip(self.down_blocks, self.attn_blocks):
|
|
x, unet_res = down_block(x)
|
|
residuals.append(unet_res)
|
|
|
|
if attn_block is not None:
|
|
x = attn_block(x)
|
|
|
|
x = self.conv(x) + x
|
|
enc_out = self.to_logit(x)
|
|
|
|
for (up_block, res) in zip(self.up_blocks, residuals[:-1][::-1]):
|
|
x = up_block(x, res)
|
|
|
|
dec_out = self.conv_out(x)
|
|
return enc_out.squeeze(), dec_out |