forked from mrq/DL-Art-School
bf811f80c1
- Report variational loss separately - Report model prediction from injector - Log these things - Use respacing like guided diffusion
109 lines
2.7 KiB
YAML
109 lines
2.7 KiB
YAML
#### general settings
|
|
name: train_imgset_rrdb_diffusion
|
|
model: extensibletrainer
|
|
scale: 1
|
|
gpu_ids: [0]
|
|
start_step: -1
|
|
checkpointing_enabled: true
|
|
fp16: false
|
|
use_tb_logger: true
|
|
wandb: false
|
|
|
|
datasets:
|
|
train:
|
|
n_workers: 4
|
|
batch_size: 32
|
|
name: div2k
|
|
mode: single_image_extensible
|
|
paths: /content/div2k # <-- Put your path here.
|
|
target_size: 128
|
|
force_multiple: 1
|
|
scale: 4
|
|
num_corrupts_per_image: 0
|
|
|
|
networks:
|
|
generator:
|
|
type: generator
|
|
which_model_G: rrdb_diffusion
|
|
args:
|
|
in_channels: 6
|
|
out_channels: 6
|
|
num_blocks: 10
|
|
|
|
#### path
|
|
path:
|
|
#pretrain_model_generator: <insert pretrained model path if desired>
|
|
strict_load: true
|
|
#resume_state: ../experiments/train_imgset_rrdb_diffusion/training_state/0.state # <-- Set this to resume from a previous training state.
|
|
|
|
steps:
|
|
generator:
|
|
training: generator
|
|
|
|
optimizer_params:
|
|
lr: !!float 3e-4
|
|
weight_decay: !!float 1e-2
|
|
beta1: 0.9
|
|
beta2: 0.9999
|
|
|
|
injectors:
|
|
# "Do it all injector": produces a reverse prediction and calculates losses on it.
|
|
diffusion:
|
|
type: gaussian_diffusion
|
|
in: hq
|
|
generator: generator
|
|
beta_schedule:
|
|
schedule_name: linear
|
|
num_diffusion_timesteps: 4000
|
|
diffusion_args:
|
|
model_mean_type: epsilon
|
|
model_var_type: learned_range
|
|
loss_type: mse
|
|
sampler_type: uniform
|
|
model_input_keys:
|
|
low_res: lq
|
|
out: loss
|
|
|
|
# Injector for visualizing what your network is doing (every 500 steps)
|
|
visual_debug:
|
|
every: 500
|
|
type: gaussian_diffusion_inference
|
|
generator: generator
|
|
output_shape: [8,3,128,128] # Change "8" to your desired output batch size.
|
|
beta_schedule:
|
|
schedule_name: linear
|
|
num_diffusion_timesteps: 500 # Change higher (up to training steps) for improved quality. Lower for faster speed.
|
|
diffusion_args:
|
|
model_mean_type: epsilon
|
|
model_var_type: learned_range
|
|
loss_type: mse
|
|
model_input_keys:
|
|
low_res: lq
|
|
out: sample
|
|
|
|
losses:
|
|
diffusion_loss:
|
|
type: direct
|
|
weight: 1
|
|
key: loss
|
|
|
|
train:
|
|
niter: 500000
|
|
warmup_iter: -1
|
|
mega_batch_factor: 1 # <-- Gradient accumulation factor. If you are running OOM, increase this to [2,4,8].
|
|
val_freq: 4000
|
|
|
|
# Default LR scheduler options
|
|
default_lr_scheme: CosineAnnealingLR_Restart
|
|
T_period: [ 200000, 200000 ]
|
|
warmup: 0
|
|
eta_min: !!float 1e-7
|
|
restarts: [ 200000, 400000 ]
|
|
restart_weights: [ .5, .5 ]
|
|
|
|
logger:
|
|
print_freq: 30
|
|
save_checkpoint_freq: 2000
|
|
visuals: [sample, hq, lq]
|
|
visual_debug_rate: 500
|
|
reverse_n1_to_1: true |