forked from mrq/DL-Art-School
364 lines
16 KiB
Python
364 lines
16 KiB
Python
import random
|
|
import numpy as np
|
|
import cv2
|
|
import torch
|
|
import torch.utils.data as data
|
|
import data.util as util
|
|
from PIL import Image, ImageOps
|
|
from io import BytesIO
|
|
import torchvision.transforms.functional as F
|
|
|
|
|
|
# Reads full-quality images and pulls tiles from them. Also extracts LR renderings of the full image with cues as to
|
|
# where those tiles came from.
|
|
class FullImageDataset(data.Dataset):
|
|
"""
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, etc) and GT image pairs.
|
|
If only GT images are provided, generate LQ images on-the-fly.
|
|
"""
|
|
def get_lq_path(self, i):
|
|
which_lq = random.randint(0, len(self.paths_LQ)-1)
|
|
return self.paths_LQ[which_lq][i % len(self.paths_LQ[which_lq])]
|
|
|
|
def __init__(self, opt):
|
|
super(FullImageDataset, self).__init__()
|
|
self.opt = opt
|
|
self.data_type = 'img'
|
|
self.paths_LQ, self.paths_GT = None, None
|
|
self.sizes_LQ, self.sizes_GT = None, None
|
|
self.LQ_env, self.GT_env = None, None
|
|
self.force_multiple = self.opt['force_multiple'] if 'force_multiple' in self.opt.keys() else 1
|
|
|
|
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'], opt['dataroot_GT_weights'])
|
|
if 'dataroot_LQ' in opt.keys():
|
|
self.paths_LQ = []
|
|
if isinstance(opt['dataroot_LQ'], list):
|
|
# Multiple LQ data sources can be given, in case there are multiple ways of corrupting a source image and
|
|
# we want the model to learn them all.
|
|
for dr_lq in opt['dataroot_LQ']:
|
|
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, dr_lq)
|
|
self.paths_LQ.append(lq_path)
|
|
else:
|
|
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
|
|
self.paths_LQ.append(lq_path)
|
|
|
|
assert self.paths_GT, 'Error: GT path is empty.'
|
|
self.random_scale_list = [1]
|
|
|
|
def motion_blur(self, image, size, angle):
|
|
k = np.zeros((size, size), dtype=np.float32)
|
|
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
|
|
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0), (size, size))
|
|
k = k * (1.0 / np.sum(k))
|
|
return cv2.filter2D(image, -1, k)
|
|
|
|
# Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping
|
|
# offset from center is chosen on a normal probability curve.
|
|
def get_square_image(self, image):
|
|
h, w, _ = image.shape
|
|
if h == w:
|
|
return image
|
|
offset = max(min(np.random.normal(scale=.3), 1.0), -1.0)
|
|
if h > w:
|
|
diff = h - w
|
|
center = diff // 2
|
|
top = int(center + offset * (center - 2))
|
|
return image[top:top+w, :, :]
|
|
else:
|
|
diff = w - h
|
|
center = diff // 2
|
|
left = int(center + offset * (center - 2))
|
|
return image[:, left:left+h, :]
|
|
|
|
def pick_along_range(self, sz, r, dev):
|
|
margin_sz = sz - r
|
|
margin_center = margin_sz // 2
|
|
return min(max(int(min(np.random.normal(scale=dev), 1.0) * margin_sz + margin_center), 0), margin_sz)
|
|
|
|
def resize_point(self, point, orig_dim, new_dim):
|
|
oh, ow = orig_dim
|
|
nh, nw = new_dim
|
|
dh, dw = float(nh) / float(oh), float(nw) / float(ow)
|
|
point[0] = int(dh * float(point[0]))
|
|
point[1] = int(dw * float(point[1]))
|
|
return point
|
|
|
|
# - Randomly extracts a square from image and resizes it to opt['target_size'].
|
|
# - Fills a mask with zeros, then places 1's where the square was extracted from. Resizes this mask and the source
|
|
# image to the target_size and returns that too.
|
|
# Notes:
|
|
# - When extracting a square, the size of the square is randomly distributed [target_size, source_size] along a
|
|
# half-normal distribution, biasing towards the target_size.
|
|
# - A biased normal distribution is also used to bias the tile selection towards the center of the source image.
|
|
def pull_tile(self, image, lq=False):
|
|
if lq:
|
|
target_sz = self.opt['min_tile_size'] // self.opt['scale']
|
|
else:
|
|
target_sz = self.opt['min_tile_size']
|
|
h, w, _ = image.shape
|
|
possible_sizes_above_target = h - target_sz
|
|
square_size = int(target_sz + possible_sizes_above_target * min(np.abs(np.random.normal(scale=.1)), 1.0))
|
|
# Pick the left,top coords to draw the patch from
|
|
left = self.pick_along_range(w, square_size, .3)
|
|
top = self.pick_along_range(w, square_size, .3)
|
|
|
|
mask = np.zeros((h, w, 1), dtype=image.dtype)
|
|
mask[top:top+square_size, left:left+square_size] = 1
|
|
patch = image[top:top+square_size, left:left+square_size, :]
|
|
center = torch.tensor([top + square_size // 2, left + square_size // 2], dtype=torch.long)
|
|
|
|
patch = cv2.resize(patch, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
|
image = cv2.resize(image, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
|
mask = cv2.resize(mask, (target_sz, target_sz), interpolation=cv2.INTER_LINEAR)
|
|
center = self.resize_point(center, (h, w), image.shape[:2])
|
|
|
|
return patch, image, mask, center
|
|
|
|
def augment_tile(self, img_GT, img_LQ, strength=1):
|
|
scale = self.opt['scale']
|
|
GT_size = self.opt['target_size']
|
|
|
|
H, W, _ = img_GT.shape
|
|
assert H >= GT_size and W >= GT_size
|
|
|
|
LQ_size = GT_size // scale
|
|
img_LQ = cv2.resize(img_LQ, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR)
|
|
img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR)
|
|
|
|
if self.opt['use_blurring']:
|
|
# Pick randomly between gaussian, motion, or no blur.
|
|
blur_det = random.randint(0, 100)
|
|
blur_magnitude = 3 if 'blur_magnitude' not in self.opt.keys() else self.opt['blur_magnitude']
|
|
blur_magnitude = max(1, int(blur_magnitude*strength))
|
|
if blur_det < 40:
|
|
blur_sig = int(random.randrange(0, int(blur_magnitude)))
|
|
img_LQ = cv2.GaussianBlur(img_LQ, (blur_magnitude, blur_magnitude), blur_sig)
|
|
elif blur_det < 70:
|
|
img_LQ = self.motion_blur(img_LQ, random.randrange(1, int(blur_magnitude) * 3), random.randint(0, 360))
|
|
|
|
return img_GT, img_LQ
|
|
|
|
# Converts img_LQ to PIL and performs JPG compression corruptions and grayscale on the image, then returns it.
|
|
def pil_augment(self, img_LQ, strength=1):
|
|
img_LQ = (img_LQ * 255).astype(np.uint8)
|
|
img_LQ = Image.fromarray(img_LQ)
|
|
if self.opt['use_compression_artifacts'] and random.random() > .25:
|
|
sub_lo = 90 * strength
|
|
sub_hi = 30 * strength
|
|
qf = random.randrange(100 - sub_lo, 100 - sub_hi)
|
|
corruption_buffer = BytesIO()
|
|
img_LQ.save(corruption_buffer, "JPEG", quality=qf, optimice=True)
|
|
corruption_buffer.seek(0)
|
|
img_LQ = Image.open(corruption_buffer)
|
|
|
|
if 'grayscale' in self.opt.keys() and self.opt['grayscale']:
|
|
img_LQ = ImageOps.grayscale(img_LQ).convert('RGB')
|
|
|
|
return img_LQ
|
|
|
|
def perform_random_hr_augment(self, image, aug_code=None, augmentations=1):
|
|
if aug_code is None:
|
|
aug_code = [random.randint(0, 10) for _ in range(augmentations)]
|
|
else:
|
|
assert augmentations == 1
|
|
aug_code = [aug_code]
|
|
if 0 in aug_code:
|
|
# Color quantization
|
|
pass
|
|
elif 1 in aug_code:
|
|
# Gaussian Blur (point or motion)
|
|
blur_magnitude = 3
|
|
blur_sig = int(random.randrange(0, int(blur_magnitude)))
|
|
image = cv2.GaussianBlur(image, (blur_magnitude, blur_magnitude), blur_sig)
|
|
elif 2 in aug_code:
|
|
# Median Blur
|
|
image = cv2.medianBlur(image, 3)
|
|
elif 3 in aug_code:
|
|
# Motion blur
|
|
image = self.motion_blur(image, random.randrange(1, 9), random.randint(0, 360))
|
|
elif 4 in aug_code:
|
|
# Smooth blur
|
|
image = cv2.blur(image, ksize=3)
|
|
elif 5 in aug_code:
|
|
# Block noise
|
|
pass
|
|
elif 6 in aug_code:
|
|
# Bicubic LR->HR
|
|
pass
|
|
elif 7 in aug_code:
|
|
# Linear compression distortion
|
|
pass
|
|
elif 8 in aug_code:
|
|
# Interlacing distortion
|
|
pass
|
|
elif 9 in aug_code:
|
|
# Chromatic aberration
|
|
pass
|
|
elif 10 in aug_code:
|
|
# Noise
|
|
pass
|
|
elif 11 in aug_code:
|
|
# JPEG compression
|
|
pass
|
|
elif 12 in aug_code:
|
|
# Lightening / saturation
|
|
pass
|
|
return image
|
|
|
|
def __getitem__(self, index):
|
|
scale = self.opt['scale']
|
|
|
|
# get full size image
|
|
full_path = self.paths_GT[index % len(self.paths_GT)]
|
|
LQ_path = full_path
|
|
img_full = util.read_img(None, full_path, None)
|
|
img_full = util.channel_convert(img_full.shape[2], 'RGB', [img_full])[0]
|
|
if self.opt['phase'] == 'train':
|
|
img_full = util.augment([img_full], self.opt['use_flip'], self.opt['use_rot'])[0]
|
|
img_full = self.get_square_image(img_full)
|
|
img_GT, gt_fullsize_ref, gt_mask, gt_center = self.pull_tile(img_full)
|
|
else:
|
|
img_GT, gt_fullsize_ref = img_full, img_full
|
|
gt_mask = np.ones(img_full.shape[:2], dtype=gt_fullsize_ref.dtype)
|
|
gt_center = torch.tensor([img_full.shape[0] // 2, img_full.shape[1] // 2], dtype=torch.long)
|
|
orig_gt_dim = gt_fullsize_ref.shape[:2]
|
|
|
|
# get LQ image
|
|
if self.paths_LQ:
|
|
LQ_path = self.get_lq_path(index)
|
|
img_lq_full = util.read_img(None, LQ_path, None)
|
|
img_lq_full = util.augment([img_lq_full], self.opt['use_flip'], self.opt['use_rot'])[0]
|
|
img_lq_full = self.get_square_image(img_lq_full)
|
|
img_LQ, lq_fullsize_ref, lq_mask, lq_center = self.pull_tile(img_lq_full, lq=True)
|
|
else: # down-sampling on-the-fly
|
|
# randomly scale during training
|
|
if self.opt['phase'] == 'train':
|
|
GT_size = self.opt['target_size']
|
|
random_scale = random.choice(self.random_scale_list)
|
|
if len(img_GT.shape) == 2:
|
|
print("ERRAR:")
|
|
print(img_GT.shape)
|
|
print(full_path)
|
|
H_s, W_s, _ = img_GT.shape
|
|
|
|
def _mod(n, random_scale, scale, thres):
|
|
rlt = int(n * random_scale)
|
|
rlt = (rlt // scale) * scale
|
|
return thres if rlt < thres else rlt
|
|
|
|
H_s = _mod(H_s, random_scale, scale, GT_size)
|
|
W_s = _mod(W_s, random_scale, scale, GT_size)
|
|
img_GT = cv2.resize(img_GT, (W_s, H_s), interpolation=cv2.INTER_LINEAR)
|
|
if img_GT.ndim == 2:
|
|
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR)
|
|
|
|
H, W, _ = img_GT.shape
|
|
|
|
# using matlab imresize
|
|
img_LQ = util.imresize_np(img_GT, 1 / scale, True)
|
|
lq_fullsize_ref = util.imresize_np(gt_fullsize_ref, 1 / scale, True)
|
|
if img_LQ.ndim == 2:
|
|
img_LQ = np.expand_dims(img_LQ, axis=2)
|
|
lq_mask, lq_center = gt_mask, self.resize_point(gt_center.clone(), orig_gt_dim, lq_fullsize_ref.shape[:2])
|
|
orig_lq_dim = lq_fullsize_ref.shape[:2]
|
|
|
|
# Enforce force_resize constraints via clipping.
|
|
h, w, _ = img_LQ.shape
|
|
if h % self.force_multiple != 0 or w % self.force_multiple != 0:
|
|
h, w = (h - h % self.force_multiple), (w - w % self.force_multiple)
|
|
img_LQ = img_LQ[:h, :w, :]
|
|
lq_fullsize_ref = lq_fullsize_ref[:h, :w, :]
|
|
h *= scale
|
|
w *= scale
|
|
img_GT = img_GT[:h, :w]
|
|
gt_fullsize_ref = gt_fullsize_ref[:h, :w, :]
|
|
|
|
if self.opt['phase'] == 'train':
|
|
img_GT, img_LQ = self.augment_tile(img_GT, img_LQ)
|
|
gt_fullsize_ref, lq_fullsize_ref = self.augment_tile(gt_fullsize_ref, lq_fullsize_ref, strength=.2)
|
|
|
|
# Scale masks.
|
|
lq_mask = cv2.resize(lq_mask, (lq_fullsize_ref.shape[1], lq_fullsize_ref.shape[0]), interpolation=cv2.INTER_LINEAR)
|
|
gt_mask = cv2.resize(gt_mask, (gt_fullsize_ref.shape[1], gt_fullsize_ref.shape[0]), interpolation=cv2.INTER_LINEAR)
|
|
|
|
# Scale center coords
|
|
lq_center = self.resize_point(lq_center, orig_lq_dim, lq_fullsize_ref.shape[:2])
|
|
gt_center = self.resize_point(gt_center, orig_gt_dim, gt_fullsize_ref.shape[:2])
|
|
|
|
# BGR to RGB, HWC to CHW, numpy to tensor
|
|
if img_GT.shape[2] == 3:
|
|
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_BGR2RGB)
|
|
img_LQ = cv2.cvtColor(img_LQ, cv2.COLOR_BGR2RGB)
|
|
lq_fullsize_ref = cv2.cvtColor(lq_fullsize_ref, cv2.COLOR_BGR2RGB)
|
|
gt_fullsize_ref = cv2.cvtColor(gt_fullsize_ref, cv2.COLOR_BGR2RGB)
|
|
|
|
# LQ needs to go to a PIL image to perform the compression-artifact transformation.
|
|
if self.opt['phase'] == 'train':
|
|
img_LQ = self.pil_augment(img_LQ)
|
|
lq_fullsize_ref = self.pil_augment(lq_fullsize_ref, strength=.2)
|
|
|
|
img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float()
|
|
gt_fullsize_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(gt_fullsize_ref, (2, 0, 1)))).float()
|
|
img_LQ = F.to_tensor(img_LQ)
|
|
lq_fullsize_ref = F.to_tensor(lq_fullsize_ref)
|
|
lq_mask = torch.from_numpy(np.ascontiguousarray(lq_mask)).unsqueeze(dim=0)
|
|
gt_mask = torch.from_numpy(np.ascontiguousarray(gt_mask)).unsqueeze(dim=0)
|
|
|
|
if 'lq_noise' in self.opt.keys():
|
|
lq_noise = torch.randn_like(img_LQ) * self.opt['lq_noise'] / 255
|
|
img_LQ += lq_noise
|
|
lq_fullsize_ref += lq_noise
|
|
|
|
# Apply the masks to the full images.
|
|
gt_fullsize_ref = torch.cat([gt_fullsize_ref, gt_mask], dim=0)
|
|
lq_fullsize_ref = torch.cat([lq_fullsize_ref, lq_mask], dim=0)
|
|
|
|
d = {'LQ': img_LQ, 'GT': img_GT, 'gt_fullsize_ref': gt_fullsize_ref, 'lq_fullsize_ref': lq_fullsize_ref,
|
|
'lq_center': lq_center, 'gt_center': gt_center,
|
|
'LQ_path': LQ_path, 'GT_path': full_path}
|
|
return d
|
|
|
|
def __len__(self):
|
|
return len(self.paths_GT)
|
|
|
|
if __name__ == '__main__':
|
|
'''
|
|
opt = {
|
|
'name': 'amalgam',
|
|
'dataroot_GT': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\images'],
|
|
'dataroot_GT_weights': [1],
|
|
'use_flip': True,
|
|
'use_compression_artifacts': True,
|
|
'use_blurring': True,
|
|
'use_rot': True,
|
|
'lq_noise': 5,
|
|
'target_size': 128,
|
|
'min_tile_size': 256,
|
|
'scale': 2,
|
|
'phase': 'train'
|
|
}
|
|
'''
|
|
opt = {
|
|
'name': 'amalgam',
|
|
'dataroot_GT': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\images'],
|
|
'dataroot_GT_weights': [1],
|
|
'force_multiple': 32,
|
|
'scale': 2,
|
|
'phase': 'test'
|
|
}
|
|
|
|
ds = FullImageDataset(opt)
|
|
import os
|
|
os.makedirs("debug", exist_ok=True)
|
|
for i in range(300, len(ds)):
|
|
print(i)
|
|
o = ds[i]
|
|
for k, v in o.items():
|
|
if 'path' not in k:
|
|
#if 'full' in k:
|
|
#masked = v[:3, :, :] * v[3]
|
|
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
|
#v = v[:3, :, :]
|
|
#import torchvision
|
|
#torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|
|
pass |