forked from mrq/DL-Art-School
95 lines
3.0 KiB
Python
95 lines
3.0 KiB
Python
import os
|
|
import os.path as osp
|
|
import logging
|
|
import random
|
|
import time
|
|
import argparse
|
|
from collections import OrderedDict
|
|
|
|
import numpy
|
|
from PIL import Image
|
|
from torchvision.transforms import ToTensor
|
|
|
|
import utils
|
|
import utils.options as option
|
|
import utils.util as util
|
|
from trainer.ExtensibleTrainer import ExtensibleTrainer
|
|
from data import create_dataset, create_dataloader
|
|
from tqdm import tqdm
|
|
import torch
|
|
import numpy as np
|
|
|
|
# A rough copy of test.py that "surfs" along a set of random noise priors to show the affect of gaussian noise on the results.
|
|
|
|
def forward_pass(model, data, output_dir, spacing):
|
|
with torch.no_grad():
|
|
model.feed_data(data, 0)
|
|
model.test()
|
|
|
|
visuals = model.get_current_visuals()['rlt'].cpu()
|
|
img_path = data['GT_path'][0]
|
|
img_name = osp.splitext(osp.basename(img_path))[0]
|
|
sr_img = util.tensor2img(visuals[0]) # uint8
|
|
|
|
# save images
|
|
suffixes = [f'_{int(spacing)}']
|
|
for suffix in suffixes:
|
|
save_img_path = osp.join(output_dir, img_name + suffix + '.png')
|
|
util.save_img(sr_img, save_img_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Set seeds
|
|
torch.manual_seed(5555)
|
|
random.seed(5555)
|
|
np.random.seed(5555)
|
|
|
|
#### options
|
|
torch.backends.cudnn.benchmark = True
|
|
want_metrics = False
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_diffusion_unet.yml')
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
opt = option.dict_to_nonedict(opt)
|
|
utils.util.loaded_options = opt
|
|
|
|
util.mkdirs(
|
|
(path for key, path in opt['path'].items()
|
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
|
screen=True, tofile=True)
|
|
logger = logging.getLogger('base')
|
|
logger.info(option.dict2str(opt))
|
|
|
|
# Load test image
|
|
im = ToTensor()(Image.open(opt['image'])) * 2 - 1
|
|
_, h, w = im.shape
|
|
if h % 2 == 1:
|
|
im = im[:,1:,:]
|
|
h = h-1
|
|
if w % 2 == 1:
|
|
im = im[:,:,1:]
|
|
w = w-1
|
|
dh, dw = (h - 32 * (h // 32)) // 2, (w - 32 * (w // 32)) // 2
|
|
if dh > 0:
|
|
im = im[:,dh:-dh]
|
|
if dw > 0:
|
|
im = im[:,:,dw:-dw]
|
|
im = im[:3].unsqueeze(0)
|
|
|
|
# Build the corruption indexes we are going to use.
|
|
correction_factors = opt['correction_factor']
|
|
|
|
opt['steps']['generator']['injectors']['visual_debug']['zero_noise'] = False
|
|
model = ExtensibleTrainer(opt)
|
|
results_dir = osp.join(opt['path']['results_root'], os.path.basename(opt['image']))
|
|
util.mkdir(results_dir)
|
|
for i in range(10):
|
|
data = {
|
|
'hq': im.to('cuda'),
|
|
'corruption_entropy': torch.tensor([correction_factors], device='cuda',
|
|
dtype=torch.float),
|
|
'GT_path': opt['image']
|
|
}
|
|
forward_pass(model, data, results_dir, i)
|