forked from mrq/DL-Art-School
492 lines
23 KiB
Python
492 lines
23 KiB
Python
import copy
|
|
import logging
|
|
import os
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.nn.parallel import DataParallel
|
|
import torch.nn as nn
|
|
|
|
import trainer.lr_scheduler as lr_scheduler
|
|
import trainer.networks as networks
|
|
from trainer.base_model import BaseModel
|
|
from trainer.batch_size_optimizer import create_batch_size_optimizer
|
|
from trainer.inject import create_injector
|
|
from trainer.steps import ConfigurableStep
|
|
from trainer.experiments.experiments import get_experiment_for_name
|
|
import torchvision.utils as utils
|
|
|
|
from utils.loss_accumulator import LossAccumulator, InfStorageLossAccumulator
|
|
from utils.util import opt_get, denormalize
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
# State is immutable to reduce complexity. Overwriting existing state keys is not supported.
|
|
class OverwrittenStateError(Exception):
|
|
def __init__(self, k, keys):
|
|
super().__init__(f'Attempted to overwrite state key: {k}. The state should be considered '
|
|
f'immutable and keys should not be overwritten. Current keys: {keys}')
|
|
|
|
class ExtensibleTrainer(BaseModel):
|
|
def __init__(self, opt, cached_networks={}):
|
|
super(ExtensibleTrainer, self).__init__(opt)
|
|
if opt['dist']:
|
|
self.rank = torch.distributed.get_rank()
|
|
else:
|
|
self.rank = -1 # non dist training
|
|
train_opt = opt['train']
|
|
|
|
# env is used as a global state to store things that subcomponents might need.
|
|
self.env = {'device': self.device,
|
|
'rank': self.rank,
|
|
'opt': opt,
|
|
'step': 0,
|
|
'dist': opt['dist']
|
|
}
|
|
if opt['path']['models'] is not None:
|
|
self.env['base_path'] = os.path.join(opt['path']['models'])
|
|
|
|
self.mega_batch_factor = 1
|
|
if self.is_train:
|
|
self.mega_batch_factor = train_opt['mega_batch_factor']
|
|
self.env['mega_batch_factor'] = self.mega_batch_factor
|
|
self.batch_factor = self.mega_batch_factor
|
|
self.ema_rate = opt_get(train_opt, ['ema_rate'], .999)
|
|
# It is advantageous for large networks to do this to save an extra copy of the model weights.
|
|
# It does come at the cost of a round trip to CPU memory at every batch.
|
|
self.do_emas = opt_get(train_opt, ['ema_enabled'], True)
|
|
self.ema_on_cpu = opt_get(train_opt, ['ema_on_cpu'], False)
|
|
self.checkpointing_cache = opt['checkpointing_enabled']
|
|
self.auto_recover = opt_get(opt, ['automatically_recover_nan_by_reverting_n_saves'], None)
|
|
self.batch_size_optimizer = create_batch_size_optimizer(train_opt)
|
|
|
|
self.netsG = {}
|
|
self.netsD = {}
|
|
for name, net in opt['networks'].items():
|
|
# Trainable is a required parameter, but the default is simply true. Set it here.
|
|
if 'trainable' not in net.keys():
|
|
net['trainable'] = True
|
|
|
|
if name in cached_networks.keys():
|
|
new_net = cached_networks[name]
|
|
else:
|
|
new_net = None
|
|
if net['type'] == 'generator':
|
|
if new_net is None:
|
|
new_net = networks.create_model(opt, net, self.netsG).to(self.device)
|
|
self.netsG[name] = new_net
|
|
elif net['type'] == 'discriminator':
|
|
if new_net is None:
|
|
new_net = networks.create_model(opt, net, self.netsD).to(self.device)
|
|
self.netsD[name] = new_net
|
|
else:
|
|
raise NotImplementedError("Can only handle generators and discriminators")
|
|
|
|
if not net['trainable']:
|
|
new_net.eval()
|
|
if net['wandb_debug'] and self.rank <= 0:
|
|
import wandb
|
|
wandb.watch(new_net, log='all', log_freq=3)
|
|
|
|
# Initialize the train/eval steps
|
|
self.step_names = []
|
|
self.steps = []
|
|
for step_name, step in opt['steps'].items():
|
|
step = ConfigurableStep(step, self.env)
|
|
self.step_names.append(step_name) # This could be an OrderedDict, but it's a PITA to integrate with AMP below.
|
|
self.steps.append(step)
|
|
|
|
# step.define_optimizers() relies on the networks being placed in the env, so put them there. Even though
|
|
# they aren't wrapped yet.
|
|
self.env['generators'] = self.netsG
|
|
self.env['discriminators'] = self.netsD
|
|
|
|
# Define the optimizers from the steps
|
|
for s in self.steps:
|
|
s.define_optimizers()
|
|
self.optimizers.extend(s.get_optimizers())
|
|
|
|
if self.is_train:
|
|
# Find the optimizers that are using the default scheduler, then build them.
|
|
def_opt = []
|
|
for s in self.steps:
|
|
def_opt.extend(s.get_optimizers_with_default_scheduler())
|
|
self.schedulers = lr_scheduler.get_scheduler_for_name(train_opt['default_lr_scheme'], def_opt, train_opt)
|
|
|
|
# Set the starting step count for the scheduler.
|
|
for sched in self.schedulers:
|
|
sched.last_epoch = opt['current_step']
|
|
else:
|
|
self.schedulers = []
|
|
|
|
# Wrap networks in distributed shells.
|
|
dnets = []
|
|
all_networks = [g for g in self.netsG.values()] + [d for d in self.netsD.values()]
|
|
for anet in all_networks:
|
|
has_any_trainable_params = False
|
|
for p in anet.parameters():
|
|
if not hasattr(p, 'DO_NOT_TRAIN'):
|
|
has_any_trainable_params = True
|
|
break
|
|
if has_any_trainable_params and opt['dist']:
|
|
if opt['dist_backend'] == 'apex':
|
|
# Use Apex to enable delay_allreduce, which is compatible with gradient checkpointing.
|
|
from apex.parallel import DistributedDataParallel
|
|
dnet = DistributedDataParallel(anet, delay_allreduce=True)
|
|
else:
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
# Do NOT be tempted to put find_unused_parameters=True here. It will not work when checkpointing is
|
|
# used and in a few other cases. But you can try it if you really want.
|
|
dnet = DistributedDataParallel(anet, device_ids=[torch.cuda.current_device()], find_unused_parameters=opt_get(opt, ['ddp_find_unused_parameters'], False))
|
|
# DDP graphs cannot be used with gradient checkpointing unless you use find_unused_parameters=True,
|
|
# which does not work with this trainer (as stated above). However, if the graph is not subject
|
|
# to control flow alterations, you can set this option to allow gradient checkpointing. Beware that
|
|
# if you are wrong about control flow, DDP will not train all your model parameters! User beware!
|
|
if opt_get(opt, ['ddp_static_graph'], False):
|
|
dnet._set_static_graph()
|
|
else:
|
|
dnet = DataParallel(anet, device_ids=[torch.cuda.current_device()])
|
|
if self.is_train:
|
|
dnet.train()
|
|
else:
|
|
dnet.eval()
|
|
dnets.append(dnet)
|
|
|
|
# Backpush the wrapped networks into the network dicts. Also build the EMA parameters.
|
|
self.networks = {}
|
|
self.emas = {}
|
|
found = 0
|
|
for dnet in dnets:
|
|
for net_dict in [self.netsD, self.netsG]:
|
|
for k, v in net_dict.items():
|
|
if v == dnet.module:
|
|
net_dict[k] = dnet
|
|
self.networks[k] = dnet
|
|
if self.is_train and self.do_emas:
|
|
self.emas[k] = copy.deepcopy(v)
|
|
if self.ema_on_cpu:
|
|
self.emas[k] = self.emas[k].cpu()
|
|
found += 1
|
|
assert found == len(self.netsG) + len(self.netsD)
|
|
|
|
# Replace the env networks with the wrapped networks
|
|
self.env['generators'] = self.netsG
|
|
self.env['discriminators'] = self.netsD
|
|
self.env['emas'] = self.emas
|
|
|
|
self.print_network() # print network
|
|
self.load() # load networks from save states as needed
|
|
|
|
# Load experiments
|
|
self.experiments = []
|
|
if 'experiments' in opt.keys():
|
|
self.experiments = [get_experiment_for_name(e) for e in opt['experiments']]
|
|
|
|
# Setting this to false triggers SRGAN to call the models update_model() function on the first iteration.
|
|
self.updated = True
|
|
|
|
def feed_data(self, data, step, need_GT=True, perform_micro_batching=True):
|
|
self.env['step'] = step
|
|
self.batch_factor = self.mega_batch_factor
|
|
self.opt['checkpointing_enabled'] = self.checkpointing_cache
|
|
# The batch factor can be adjusted on a period to allow known high-memory steps to fit in GPU memory.
|
|
if 'train' in self.opt.keys() and \
|
|
'mod_batch_factor' in self.opt['train'].keys() and \
|
|
self.env['step'] % self.opt['train']['mod_batch_factor_every'] == 0:
|
|
self.batch_factor = self.opt['train']['mod_batch_factor']
|
|
if self.opt['train']['mod_batch_factor_also_disable_checkpointing']:
|
|
self.opt['checkpointing_enabled'] = False
|
|
|
|
self.eval_state = {}
|
|
for o in self.optimizers:
|
|
o.zero_grad()
|
|
torch.cuda.empty_cache()
|
|
|
|
sort_key = opt_get(self.opt, ['train', 'sort_key'], None)
|
|
if sort_key is not None:
|
|
sort_indices = torch.sort(data[sort_key], descending=True).indices
|
|
else:
|
|
sort_indices = None
|
|
|
|
batch_factor = self.batch_factor if perform_micro_batching else 1
|
|
self.dstate = {}
|
|
for k, v in data.items():
|
|
if sort_indices is not None:
|
|
if isinstance(v, list):
|
|
v = [v[i] for i in sort_indices]
|
|
else:
|
|
v = v[sort_indices]
|
|
if isinstance(v, torch.Tensor):
|
|
self.dstate[k] = [t.to(self.device) for t in torch.chunk(v, chunks=batch_factor, dim=0)]
|
|
|
|
if opt_get(self.opt, ['train', 'auto_collate'], False):
|
|
for k, v in self.dstate.items():
|
|
if f'{k}_lengths' in self.dstate.keys():
|
|
for c in range(len(v)):
|
|
maxlen = self.dstate[f'{k}_lengths'][c].max()
|
|
if len(v[c].shape) == 2:
|
|
self.dstate[k][c] = self.dstate[k][c][:, :maxlen]
|
|
elif len(v[c].shape) == 3:
|
|
self.dstate[k][c] = self.dstate[k][c][:, :, :maxlen]
|
|
elif len(v[c].shape) == 4:
|
|
self.dstate[k][c] = self.dstate[k][c][:, :, :, :maxlen]
|
|
|
|
|
|
def optimize_parameters(self, it, optimize=True, return_grad_norms=False):
|
|
grad_norms = {}
|
|
|
|
# Some models need to make parametric adjustments per-step. Do that here.
|
|
for net in self.networks.values():
|
|
if hasattr(net.module, "update_for_step"):
|
|
net.module.update_for_step(it, os.path.join(self.opt['path']['models'], ".."))
|
|
|
|
# Iterate through the steps, performing them one at a time.
|
|
state = self.dstate
|
|
for step_num, step in enumerate(self.steps):
|
|
train_step = True
|
|
# 'every' is used to denote steps that should only occur at a certain integer factor rate. e.g. '2' occurs every 2 steps.
|
|
# Note that the injection points for the step might still be required, so address this by setting train_step=False
|
|
if 'every' in step.step_opt.keys() and it % step.step_opt['every'] != 0:
|
|
train_step = False
|
|
# Steps can opt out of early (or late) training, make sure that happens here.
|
|
if 'after' in step.step_opt.keys() and it < step.step_opt['after'] or 'before' in step.step_opt.keys() and it > step.step_opt['before']:
|
|
continue
|
|
# Steps can choose to not execute if a state key is missing.
|
|
if 'requires' in step.step_opt.keys():
|
|
requirements_met = True
|
|
for requirement in step.step_opt['requires']:
|
|
if requirement not in state.keys():
|
|
requirements_met = False
|
|
if not requirements_met:
|
|
continue
|
|
|
|
if train_step:
|
|
# Only set requires_grad=True for the network being trained.
|
|
nets_to_train = step.get_networks_trained()
|
|
enabled = 0
|
|
for name, net in self.networks.items():
|
|
net_enabled = name in nets_to_train
|
|
if net_enabled:
|
|
enabled += 1
|
|
# Networks can opt out of training before a certain iteration by declaring 'after' in their definition.
|
|
if 'after' in self.opt['networks'][name].keys() and it < self.opt['networks'][name]['after']:
|
|
net_enabled = False
|
|
for p in net.parameters():
|
|
do_not_train_flag = hasattr(p, "DO_NOT_TRAIN") or (hasattr(p, "DO_NOT_TRAIN_UNTIL") and it < p.DO_NOT_TRAIN_UNTIL)
|
|
if p.dtype != torch.int64 and p.dtype != torch.bool and not do_not_train_flag:
|
|
p.requires_grad = net_enabled
|
|
else:
|
|
p.requires_grad = False
|
|
assert enabled == len(nets_to_train)
|
|
|
|
# Update experiments
|
|
[e.before_step(self.opt, self.step_names[step_num], self.env, nets_to_train, state) for e in self.experiments]
|
|
|
|
for o in step.get_optimizers():
|
|
o.zero_grad()
|
|
|
|
# Now do a forward and backward pass for each gradient accumulation step.
|
|
new_states = {}
|
|
self.batch_size_optimizer.focus(net)
|
|
for m in range(self.batch_factor):
|
|
ns = step.do_forward_backward(state, m, step_num, train=train_step, no_ddp_sync=(m+1 < self.batch_factor))
|
|
for k, v in ns.items():
|
|
if k not in new_states.keys():
|
|
new_states[k] = [v]
|
|
else:
|
|
new_states[k].append(v)
|
|
|
|
# Push the detached new state tensors into the state map for use with the next step.
|
|
for k, v in new_states.items():
|
|
if k in state.keys():
|
|
raise OverwrittenStateError(k, list(state.keys()))
|
|
state[k] = v
|
|
|
|
|
|
# (Maybe) perform a step.
|
|
if train_step and optimize and self.batch_size_optimizer.should_step(it):
|
|
# Call into pre-step hooks.
|
|
for name, net in self.networks.items():
|
|
if hasattr(net.module, "before_step"):
|
|
net.module.before_step(it)
|
|
|
|
if return_grad_norms and train_step:
|
|
for name in nets_to_train:
|
|
model = self.networks[name]
|
|
if hasattr(model.module, 'get_grad_norm_parameter_groups'):
|
|
pgroups = {f'{name}_{k}': v for k, v in model.module.get_grad_norm_parameter_groups().items()}
|
|
else:
|
|
pgroups = {f'{name}_all_parameters': list(model.parameters())}
|
|
for name in pgroups.keys():
|
|
grad_norms[name] = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in pgroups[name]]), 2)
|
|
|
|
self.consume_gradients(state, step, it)
|
|
|
|
|
|
# Record visual outputs for usage in debugging and testing.
|
|
if 'visuals' in self.opt['logger'].keys() and self.rank <= 0 and it % self.opt['logger']['visual_debug_rate'] == 0:
|
|
def fix_image(img):
|
|
if opt_get(self.opt, ['logger', 'is_mel_spectrogram'], False):
|
|
img = img.unsqueeze(dim=1)
|
|
# Normalize so spectrogram is easier to view.
|
|
img = (img - img.mean()) / img.std()
|
|
if img.shape[1] > 3:
|
|
img = img[:, :3, :, :]
|
|
if opt_get(self.opt, ['logger', 'reverse_n1_to_1'], False):
|
|
img = (img + 1) / 2
|
|
if opt_get(self.opt, ['logger', 'reverse_imagenet_norm'], False):
|
|
img = denormalize(img)
|
|
return img
|
|
|
|
sample_save_path = os.path.join(self.opt['path']['models'], "..", "visual_dbg")
|
|
for v in self.opt['logger']['visuals']:
|
|
if v not in state.keys():
|
|
continue # This can happen for several reasons (ex: 'after' defs), just ignore it.
|
|
for i, dbgv in enumerate(state[v]):
|
|
if 'recurrent_visual_indices' in self.opt['logger'].keys() and len(dbgv.shape)==5:
|
|
for rvi in self.opt['logger']['recurrent_visual_indices']:
|
|
rdbgv = fix_image(dbgv[:, rvi])
|
|
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
|
|
utils.save_image(rdbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i_%02i.png" % (it, rvi, i)))
|
|
else:
|
|
dbgv = fix_image(dbgv)
|
|
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
|
|
utils.save_image(dbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i.png" % (it, i)))
|
|
# Some models have their own specific visual debug routines.
|
|
for net_name, net in self.networks.items():
|
|
if hasattr(net.module, "visual_dbg"):
|
|
model_vdbg_dir = os.path.join(sample_save_path, net_name)
|
|
os.makedirs(model_vdbg_dir, exist_ok=True)
|
|
net.module.visual_dbg(it, model_vdbg_dir)
|
|
|
|
return grad_norms
|
|
|
|
|
|
def consume_gradients(self, state, step, it):
|
|
[e.before_optimize(state) for e in self.experiments]
|
|
self.restore_optimizers()
|
|
step.do_step(it)
|
|
self.stash_optimizers()
|
|
|
|
# Call into custom step hooks as well as update EMA params.
|
|
for name, net in self.networks.items():
|
|
if hasattr(net.module, "after_step"):
|
|
net.module.after_step(it)
|
|
if self.do_emas:
|
|
ema_params = self.emas[name].parameters()
|
|
net_params = net.parameters()
|
|
for ep, np in zip(ema_params, net_params):
|
|
if self.ema_on_cpu:
|
|
np = np.cpu()
|
|
ep.detach().mul_(self.ema_rate).add_(np, alpha=1 - self.ema_rate)
|
|
[e.after_optimize(state) for e in self.experiments]
|
|
|
|
|
|
def test(self):
|
|
for net in self.netsG.values():
|
|
net.eval()
|
|
|
|
accum_metrics = InfStorageLossAccumulator()
|
|
with torch.no_grad():
|
|
# This can happen one of two ways: Either a 'validation injector' is provided, in which case we run that.
|
|
# Or, we run the entire chain of steps in "train" mode and use eval.output_state.
|
|
if 'injectors' in self.opt['eval'].keys():
|
|
state = {}
|
|
for inj in self.opt['eval']['injectors'].values():
|
|
# Need to move from mega_batch mode to batch mode (remove chunks)
|
|
for k, v in self.dstate.items():
|
|
state[k] = v[0]
|
|
inj = create_injector(inj, self.env)
|
|
state.update(inj(state))
|
|
else:
|
|
# Iterate through the steps, performing them one at a time.
|
|
state = self.dstate
|
|
for step_num, s in enumerate(self.steps):
|
|
ns = s.do_forward_backward(state, 0, step_num, train=False, loss_accumulator=accum_metrics)
|
|
for k, v in ns.items():
|
|
state[k] = [v]
|
|
|
|
self.eval_state = {}
|
|
for k, v in state.items():
|
|
if isinstance(v, list):
|
|
self.eval_state[k] = [s.detach().cpu() if isinstance(s, torch.Tensor) else s for s in v]
|
|
else:
|
|
self.eval_state[k] = [v.detach().cpu() if isinstance(v, torch.Tensor) else v]
|
|
|
|
for net in self.netsG.values():
|
|
net.train()
|
|
return accum_metrics
|
|
|
|
# Fetches a summary of the log.
|
|
def get_current_log(self, step):
|
|
log = {}
|
|
for s in self.steps:
|
|
log.update(s.get_metrics())
|
|
|
|
for e in self.experiments:
|
|
log.update(e.get_log_data())
|
|
|
|
# Some generators can do their own metric logging.
|
|
for net_name, net in self.networks.items():
|
|
if hasattr(net.module, "get_debug_values"):
|
|
log.update(net.module.get_debug_values(step, net_name))
|
|
|
|
# Log learning rate (from first param group) too.
|
|
for o in self.optimizers:
|
|
for pgi, pg in enumerate(o.param_groups):
|
|
log['learning_rate_%s_%i' % (o._config['network'], pgi)] = pg['lr']
|
|
|
|
# The batch size optimizer also outputs loggable data.
|
|
log.update(self.batch_size_optimizer.get_statistics())
|
|
return log
|
|
|
|
def get_current_visuals(self, need_GT=True):
|
|
# Conforms to an archaic format from MMSR.
|
|
res = {'rlt': self.eval_state[self.opt['eval']['output_state']][0].float().cpu()}
|
|
if 'hq' in self.eval_state.keys():
|
|
res['hq'] = self.eval_state['hq'][0].float().cpu(),
|
|
return res
|
|
|
|
def print_network(self):
|
|
for name, net in self.networks.items():
|
|
s, n = self.get_network_description(net)
|
|
net_struc_str = '{}'.format(net.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network {} structure: {}, with parameters: {:,d}'.format(name, net_struc_str, n))
|
|
logger.info(s)
|
|
|
|
def load(self):
|
|
for netdict in [self.netsG, self.netsD]:
|
|
for name, net in netdict.items():
|
|
load_path = self.opt['path']['pretrain_model_%s' % (name,)]
|
|
if load_path is None:
|
|
return
|
|
if self.rank <= 0:
|
|
logger.info('Loading model for [%s]' % (load_path,))
|
|
self.load_network(load_path, net, self.opt['path']['strict_load'], opt_get(self.opt, ['path', f'pretrain_base_path_{name}']))
|
|
load_path_ema = load_path.replace('.pth', '_ema.pth')
|
|
if self.is_train and self.do_emas:
|
|
ema_model = self.emas[name]
|
|
if os.path.exists(load_path_ema):
|
|
self.load_network(load_path_ema, ema_model, self.opt['path']['strict_load'], opt_get(self.opt, ['path', f'pretrain_base_path_{name}']))
|
|
else:
|
|
print("WARNING! Unable to find EMA network! Starting a new EMA from given model parameters.")
|
|
self.emas[name] = copy.deepcopy(net)
|
|
if self.ema_on_cpu:
|
|
self.emas[name] = self.emas[name].cpu()
|
|
if hasattr(net.module, 'network_loaded'):
|
|
net.module.network_loaded()
|
|
|
|
def save(self, iter_step):
|
|
for name, net in self.networks.items():
|
|
# Don't save non-trainable networks.
|
|
if self.opt['networks'][name]['trainable']:
|
|
self.save_network(net, name, iter_step)
|
|
if self.do_emas:
|
|
self.save_network(self.emas[name], f'{name}_ema', iter_step)
|
|
|
|
def force_restore_swapout(self):
|
|
# Legacy method. Do nothing.
|
|
pass
|