forked from mrq/DL-Art-School
06d1c62c5a
Sweeeeet
32 lines
1.3 KiB
Python
32 lines
1.3 KiB
Python
import torch
|
|
from torch.utils.data import Dataset
|
|
import torchvision.transforms as T
|
|
from torchvision import datasets
|
|
|
|
# Wrapper for basic pytorch datasets which re-wraps them into a format usable by ExtensibleTrainer.
|
|
class TorchDataset(Dataset):
|
|
def __init__(self, opt):
|
|
DATASET_MAP = {
|
|
"mnist": datasets.MNIST,
|
|
"fmnist": datasets.FashionMNIST,
|
|
"cifar10": datasets.CIFAR10,
|
|
}
|
|
transforms = []
|
|
if opt['flip']:
|
|
transforms.append(T.RandomHorizontalFlip())
|
|
if opt['crop_sz']:
|
|
transforms.append(T.RandomCrop(opt['crop_sz'], padding=opt['padding'], padding_mode="reflect"))
|
|
transforms.append(T.ToTensor())
|
|
transforms = T.Compose(transforms)
|
|
is_for_training = opt['test'] if 'test' in opt.keys() else True
|
|
self.dataset = DATASET_MAP[opt['dataset']](opt['datapath'], train=is_for_training, download=True, transform=transforms)
|
|
self.len = opt['fixed_len'] if 'fixed_len' in opt.keys() else len(self.dataset)
|
|
|
|
def __getitem__(self, item):
|
|
underlying_item = self.dataset[item][0]
|
|
return {'LQ': underlying_item, 'GT': underlying_item,
|
|
'LQ_path': str(item), 'GT_path': str(item)}
|
|
|
|
def __len__(self):
|
|
return self.len
|