forked from mrq/DL-Art-School
142 lines
5.4 KiB
Python
142 lines
5.4 KiB
Python
import os
|
|
import pathlib
|
|
import random
|
|
|
|
import audio2numpy
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
import torch.nn.functional as F
|
|
from tqdm import tqdm
|
|
|
|
import models.tacotron2.layers as layers
|
|
from data.audio.nv_tacotron_dataset import load_mozilla_cv, load_voxpopuli
|
|
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
|
from models.tacotron2.text import text_to_sequence
|
|
from utils.util import opt_get
|
|
|
|
|
|
def get_similar_files_libritts(filename):
|
|
filedir = os.path.dirname(filename)
|
|
return list(pathlib.Path(filedir).glob('*.wav'))
|
|
|
|
|
|
class StopPredictionDataset(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio,text pairs
|
|
2) normalizes text and converts them to sequences of one-hot vectors
|
|
3) computes mel-spectrograms from audio files.
|
|
"""
|
|
def __init__(self, hparams):
|
|
self.path = hparams['path']
|
|
if not isinstance(self.path, list):
|
|
self.path = [self.path]
|
|
|
|
fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
|
|
if not isinstance(fetcher_mode, list):
|
|
fetcher_mode = [fetcher_mode]
|
|
assert len(self.path) == len(fetcher_mode)
|
|
|
|
self.audiopaths_and_text = []
|
|
for p, fm in zip(self.path, fetcher_mode):
|
|
if fm == 'lj' or fm == 'libritts':
|
|
fetcher_fn = load_filepaths_and_text
|
|
self.get_similar_files = get_similar_files_libritts
|
|
elif fm == 'voxpopuli':
|
|
fetcher_fn = load_voxpopuli
|
|
self.get_similar_files = None # TODO: Fix.
|
|
else:
|
|
raise NotImplementedError()
|
|
self.audiopaths_and_text.extend(fetcher_fn(p))
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
|
|
self.stft = layers.TacotronSTFT(
|
|
hparams.filter_length, hparams.hop_length, hparams.win_length,
|
|
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
|
hparams.mel_fmax)
|
|
random.seed(hparams.seed)
|
|
random.shuffle(self.audiopaths_and_text)
|
|
self.max_mel_len = opt_get(hparams, ['max_mel_length'], None)
|
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
|
|
|
def get_mel(self, filename):
|
|
filename = str(filename)
|
|
if filename.endswith('.wav'):
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
else:
|
|
audio, sampling_rate = audio2numpy.audio_from_file(filename)
|
|
audio = torch.tensor(audio)
|
|
|
|
if sampling_rate != self.input_sample_rate:
|
|
if sampling_rate < self.input_sample_rate:
|
|
print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.')
|
|
audio_norm = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='nearest', recompute_scale_factor=False).squeeze()
|
|
else:
|
|
audio_norm = audio
|
|
if audio_norm.std() > 1:
|
|
print(f"Something is very wrong with the given audio. std_dev={audio_norm.std()}. file={filename}")
|
|
return None
|
|
audio_norm.clip_(-1, 1)
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
|
if self.input_sample_rate != self.sampling_rate:
|
|
ratio = self.sampling_rate / self.input_sample_rate
|
|
audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
|
|
melspec = self.stft.mel_spectrogram(audio_norm)
|
|
melspec = torch.squeeze(melspec, 0)
|
|
|
|
return melspec
|
|
|
|
def __getitem__(self, index):
|
|
path = self.audiopaths_and_text[index][0]
|
|
similar_files = self.get_similar_files(path)
|
|
mel = self.get_mel(path)
|
|
terms = torch.zeros(mel.shape[1])
|
|
terms[-1] = 1
|
|
while mel.shape[-1] < self.max_mel_len:
|
|
another_file = random.choice(similar_files)
|
|
another_mel = self.get_mel(another_file)
|
|
oterms = torch.zeros(another_mel.shape[1])
|
|
oterms[-1] = 1
|
|
mel = torch.cat([mel, another_mel], dim=-1)
|
|
terms = torch.cat([terms, oterms], dim=-1)
|
|
mel = mel[:, :self.max_mel_len]
|
|
terms = terms[:self.max_mel_len]
|
|
|
|
|
|
return {
|
|
'padded_mel': mel,
|
|
'termination_mask': terms,
|
|
}
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
params = {
|
|
'mode': 'stop_prediction',
|
|
'path': 'E:\\audio\\LibriTTS\\train-clean-360_list.txt',
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': 16,
|
|
'fetcher_mode': 'libritts',
|
|
'max_mel_length': 800,
|
|
#'return_wavs': True,
|
|
#'input_sample_rate': 22050,
|
|
#'sampling_rate': 8000
|
|
}
|
|
from data import create_dataset, create_dataloader
|
|
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c, shuffle=True)
|
|
i = 0
|
|
m = None
|
|
for k in range(1000):
|
|
for i, b in tqdm(enumerate(dl)):
|
|
continue
|
|
pm = b['padded_mel']
|
|
pm = torch.nn.functional.pad(pm, (0, 800-pm.shape[-1]))
|
|
m = pm if m is None else torch.cat([m, pm], dim=0)
|
|
print(m.mean(), m.std()) |