forked from mrq/DL-Art-School
471 lines
20 KiB
Python
471 lines
20 KiB
Python
import random
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
|
|
from models.audio.music.cheater_gen_ar import ConditioningAR
|
|
from trainer.inject import Injector
|
|
from utils.music_utils import get_music_codegen
|
|
from utils.util import opt_get, load_model_from_config, pad_or_truncate
|
|
|
|
MEL_MIN = -11.512925148010254
|
|
TACOTRON_MEL_MAX = 2.3143386840820312
|
|
TORCH_MEL_MAX = 4.82 # FYI: this STILL isn't assertive enough...
|
|
|
|
def normalize_torch_mel(mel):
|
|
return 2 * ((mel - MEL_MIN) / (TORCH_MEL_MAX - MEL_MIN)) - 1
|
|
|
|
def denormalize_torch_mel(norm_mel):
|
|
return ((norm_mel+1)/2) * (TORCH_MEL_MAX - MEL_MIN) + MEL_MIN
|
|
|
|
def normalize_mel(mel):
|
|
return 2 * ((mel - MEL_MIN) / (TACOTRON_MEL_MAX - MEL_MIN)) - 1
|
|
|
|
def denormalize_mel(norm_mel):
|
|
return ((norm_mel+1)/2) * (TACOTRON_MEL_MAX - MEL_MIN) + MEL_MIN
|
|
|
|
class MelSpectrogramInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
from models.audio.tts.tacotron2 import TacotronSTFT
|
|
# These are the default tacotron values for the MEL spectrogram.
|
|
filter_length = opt_get(opt, ['filter_length'], 1024)
|
|
hop_length = opt_get(opt, ['hop_length'], 256)
|
|
win_length = opt_get(opt, ['win_length'], 1024)
|
|
n_mel_channels = opt_get(opt, ['n_mel_channels'], 80)
|
|
mel_fmin = opt_get(opt, ['mel_fmin'], 0)
|
|
mel_fmax = opt_get(opt, ['mel_fmax'], 8000)
|
|
sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
|
self.stft = TacotronSTFT(filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax)
|
|
self.do_normalization = opt_get(opt, ['do_normalization'], None) # This is different from the TorchMelSpectrogramInjector. This just normalizes to the range [-1,1]
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
|
|
inp = inp.squeeze(1)
|
|
assert len(inp.shape) == 2
|
|
self.stft = self.stft.to(inp.device)
|
|
mel = self.stft.mel_spectrogram(inp)
|
|
if self.do_normalization:
|
|
mel = normalize_mel(mel)
|
|
return {self.output: mel}
|
|
|
|
|
|
class TorchMelSpectrogramInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
# These are the default tacotron values for the MEL spectrogram.
|
|
self.filter_length = opt_get(opt, ['filter_length'], 1024)
|
|
self.hop_length = opt_get(opt, ['hop_length'], 256)
|
|
self.win_length = opt_get(opt, ['win_length'], 1024)
|
|
self.n_mel_channels = opt_get(opt, ['n_mel_channels'], 80)
|
|
self.mel_fmin = opt_get(opt, ['mel_fmin'], 0)
|
|
self.mel_fmax = opt_get(opt, ['mel_fmax'], 8000)
|
|
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
|
norm = opt_get(opt, ['normalize'], False)
|
|
self.true_norm = opt_get(opt, ['true_normalization'], False)
|
|
self.mel_stft = torchaudio.transforms.MelSpectrogram(n_fft=self.filter_length, hop_length=self.hop_length,
|
|
win_length=self.win_length, power=2, normalized=norm,
|
|
sample_rate=self.sampling_rate, f_min=self.mel_fmin,
|
|
f_max=self.mel_fmax, n_mels=self.n_mel_channels,
|
|
norm="slaney")
|
|
self.mel_norm_file = opt_get(opt, ['mel_norm_file'], None)
|
|
if self.mel_norm_file is not None:
|
|
self.mel_norms = torch.load(self.mel_norm_file)
|
|
else:
|
|
self.mel_norms = None
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
inp = state[self.input]
|
|
if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
|
|
inp = inp.squeeze(1)
|
|
assert len(inp.shape) == 2
|
|
self.mel_stft = self.mel_stft.to(inp.device)
|
|
mel = self.mel_stft(inp)
|
|
# Perform dynamic range compression
|
|
mel = torch.log(torch.clamp(mel, min=1e-5))
|
|
if self.mel_norms is not None:
|
|
self.mel_norms = self.mel_norms.to(mel.device)
|
|
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
|
|
if self.true_norm:
|
|
mel = normalize_torch_mel(mel)
|
|
return {self.output: mel}
|
|
|
|
|
|
class RandomAudioCropInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
if 'crop_size' in opt.keys():
|
|
self.min_crop_sz = opt['crop_size']
|
|
self.max_crop_sz = self.min_crop_sz
|
|
else:
|
|
self.min_crop_sz = opt['min_crop_size']
|
|
self.max_crop_sz = opt['max_crop_size']
|
|
self.lengths_key = opt['lengths_key']
|
|
self.crop_start_key = opt['crop_start_key']
|
|
self.min_buffer = opt_get(opt, ['min_buffer'], 0)
|
|
self.rand_buffer_ptr=9999
|
|
self.rand_buffer_sz=5000
|
|
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
if torch.distributed.get_world_size() > 1:
|
|
# All processes should agree, otherwise all processes wait to process max_crop_sz (effectively). But agreeing too often
|
|
# is expensive, so agree on a "chunk" at a time.
|
|
if self.rand_buffer_ptr >= self.rand_buffer_sz:
|
|
self.rand_buffer = torch.randint(self.min_crop_sz, self.max_crop_sz, (self.rand_buffer_sz,), dtype=torch.long, device=inp.device)
|
|
torch.distributed.broadcast(self.rand_buffer, 0)
|
|
self.rand_buffer_ptr = 0
|
|
crop_sz = self.rand_buffer[self.rand_buffer_ptr]
|
|
self.rand_buffer_ptr += 1
|
|
else:
|
|
crop_sz = random.randint(self.min_crop_sz, self.max_crop_sz)
|
|
if self.lengths_key is not None:
|
|
lens = state[self.lengths_key]
|
|
len = torch.min(lens)
|
|
else:
|
|
len = inp.shape[-1]
|
|
|
|
margin = len - crop_sz - self.min_buffer * 2
|
|
if margin < 0:
|
|
start = self.min_buffer
|
|
else:
|
|
start = random.randint(0, margin) + self.min_buffer
|
|
|
|
res = {self.output: inp[:, :, start:start+crop_sz]}
|
|
if self.crop_start_key is not None:
|
|
res[self.crop_start_key] = start
|
|
return res
|
|
|
|
|
|
class AudioClipInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.clip_size = opt['clip_size']
|
|
self.ctc_codes = opt['ctc_codes_key']
|
|
self.output_ctc = opt['ctc_out_key']
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
ctc = state[self.ctc_codes]
|
|
len = inp.shape[-1]
|
|
if len > self.clip_size:
|
|
proportion_inp_remaining = self.clip_size/len
|
|
inp = inp[:, :, :self.clip_size]
|
|
ctc = ctc[:,:int(proportion_inp_remaining*ctc.shape[-1])]
|
|
return {self.output: inp, self.output_ctc: ctc}
|
|
|
|
|
|
class AudioResampleInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.input_sr = opt['input_sample_rate']
|
|
self.output_sr = opt['output_sample_rate']
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
return {self.output: torchaudio.functional.resample(inp, self.input_sr, self.output_sr)}
|
|
|
|
|
|
class DiscreteTokenInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
cfg = opt_get(opt, ['dvae_config'], "../experiments/train_diffusion_vocoder_22k_level.yml")
|
|
dvae_name = opt_get(opt, ['dvae_name'], 'dvae')
|
|
self.dvae = load_model_from_config(cfg, dvae_name, device=f'cuda:{env["device"]}').eval()
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
with torch.no_grad():
|
|
self.dvae = self.dvae.to(inp.device)
|
|
codes = self.dvae.get_codebook_indices(inp)
|
|
return {self.output: codes}
|
|
|
|
|
|
class GptVoiceLatentInjector(Injector):
|
|
"""
|
|
This injector does all the legwork to generate latents out of a UnifiedVoice model, including encoding all audio
|
|
inputs into a MEL spectrogram and discretizing the inputs.
|
|
"""
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
# For discrete tokenization.
|
|
cfg = opt_get(opt, ['dvae_config'], "../experiments/train_diffusion_vocoder_22k_level.yml")
|
|
dvae_name = opt_get(opt, ['dvae_name'], 'dvae')
|
|
self.dvae = load_model_from_config(cfg, dvae_name).cuda().eval()
|
|
# The unified_voice model.
|
|
cfg = opt_get(opt, ['gpt_config'], "../experiments/train_gpt_tts_unified.yml")
|
|
model_name = opt_get(opt, ['gpt_name'], 'gpt')
|
|
pretrained_path = opt['gpt_path']
|
|
self.gpt = load_model_from_config(cfg, model_name=model_name,
|
|
also_load_savepoint=False, load_path=pretrained_path).cuda().eval()
|
|
self.needs_move = True
|
|
# Mel converter
|
|
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_norm_file': '../experiments/clips_mel_norms.pth'},{})
|
|
# Aux input keys.
|
|
self.conditioning_key = opt['conditioning_clip']
|
|
self.text_input_key = opt['text']
|
|
self.text_lengths_key = opt['text_lengths']
|
|
self.input_lengths_key = opt['input_lengths']
|
|
|
|
def to_mel(self, t):
|
|
return self.mel_inj({'wav': t})['mel']
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
mel_inputs = self.to_mel(state[self.input])
|
|
state_cond = pad_or_truncate(state[self.conditioning_key], 132300)
|
|
mel_conds = []
|
|
for k in range(state_cond.shape[1]):
|
|
mel_conds.append(self.to_mel(state_cond[:, k]))
|
|
mel_conds = torch.stack(mel_conds, dim=1)
|
|
|
|
if self.needs_move:
|
|
self.dvae = self.dvae.to(mel_inputs.device)
|
|
self.gpt = self.gpt.to(mel_inputs.device)
|
|
codes = self.dvae.get_codebook_indices(mel_inputs)
|
|
latents = self.gpt(mel_conds, state[self.text_input_key],
|
|
state[self.text_lengths_key], codes, state[self.input_lengths_key],
|
|
text_first=True, raw_mels=None, return_attentions=False, return_latent=True)
|
|
assert latents.shape[1] == codes.shape[1]
|
|
return {self.output: latents}
|
|
|
|
|
|
class ReverseUnivnetInjector(Injector):
|
|
"""
|
|
This injector specifically builds inputs and labels for a univnet detector.g
|
|
"""
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
from scripts.audio.gen.speech_synthesis_utils import load_univnet_vocoder
|
|
self.univnet = load_univnet_vocoder().cuda()
|
|
self.mel_input_key = opt['mel']
|
|
self.label_output_key = opt['labels']
|
|
self.do_augmentations = opt_get(opt, ['do_aug'], True)
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
original_audio = state[self.input]
|
|
mel = state[self.mel_input_key]
|
|
decoded_mel = self.univnet.inference(mel)[:,:,:original_audio.shape[-1]]
|
|
|
|
if self.do_augmentations:
|
|
original_audio = original_audio + torch.rand_like(original_audio) * random.random() * .005
|
|
decoded_mel = decoded_mel + torch.rand_like(decoded_mel) * random.random() * .005
|
|
if(random.random() < .5):
|
|
original_audio = torchaudio.functional.resample(torchaudio.functional.resample(original_audio, 24000, 10000), 10000, 24000)
|
|
if(random.random() < .5):
|
|
decoded_mel = torchaudio.functional.resample(torchaudio.functional.resample(decoded_mel, 24000, 10000), 10000, 24000)
|
|
if(random.random() < .5):
|
|
original_audio = torchaudio.functional.resample(original_audio, 24000, 22000 + random.randint(0,2000))
|
|
if(random.random() < .5):
|
|
decoded_mel = torchaudio.functional.resample(decoded_mel, 24000, 22000 + random.randint(0,2000))
|
|
|
|
smallest_dim = min(original_audio.shape[-1], decoded_mel.shape[-1])
|
|
original_audio = original_audio[:,:,:smallest_dim]
|
|
decoded_mel = decoded_mel[:,:,:smallest_dim]
|
|
|
|
labels = (torch.rand(mel.shape[0], 1, 1, device=mel.device) > .5)
|
|
output = torch.where(labels, original_audio, decoded_mel)
|
|
|
|
return {self.output: output, self.label_output_key: labels[:,0,0].long()}
|
|
|
|
|
|
class ConditioningLatentDistributionDivergenceInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
if 'gpt_config' in opt.keys():
|
|
# The unified_voice model.
|
|
cfg = opt_get(opt, ['gpt_config'], "../experiments/train_gpt_tts_unified.yml")
|
|
model_name = opt_get(opt, ['gpt_name'], 'gpt')
|
|
pretrained_path = opt['gpt_path']
|
|
self.latent_producer = load_model_from_config(cfg, model_name=model_name,
|
|
also_load_savepoint=False, load_path=pretrained_path).eval()
|
|
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_norm_file': '../experiments/clips_mel_norms.pth'},{})
|
|
else:
|
|
from models.audio.tts.unet_diffusion_tts_flat import DiffusionTtsFlat
|
|
self.latent_producer = DiffusionTtsFlat(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
|
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False,
|
|
num_heads=16, layer_drop=0, unconditioned_percentage=0).eval()
|
|
self.latent_producer.load_state_dict(torch.load(opt['diffusion_path']))
|
|
self.mel_inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_fmax': 12000, 'sampling_rate': 24000, 'n_mel_channels': 100},{})
|
|
self.needs_move = True
|
|
# Aux input keys.
|
|
self.conditioning_key = opt['conditioning_clip']
|
|
# Output keys
|
|
self.var_loss_key = opt['var_loss']
|
|
|
|
def to_mel(self, t):
|
|
return self.mel_inj({'wav': t})['mel']
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
state_preds = state[self.input]
|
|
state_cond = pad_or_truncate(state[self.conditioning_key], 132300)
|
|
mel_conds = []
|
|
for k in range(state_cond.shape[1]):
|
|
mel_conds.append(self.to_mel(state_cond[:, k]))
|
|
mel_conds = torch.stack(mel_conds, dim=1)
|
|
|
|
if self.needs_move:
|
|
self.latent_producer = self.latent_producer.to(mel_conds.device)
|
|
latents = self.latent_producer.get_conditioning_latent(mel_conds)
|
|
|
|
sp_means, sp_vars = state_preds.mean(dim=0), state_preds.var(dim=0)
|
|
tr_means, tr_vars = latents.mean(dim=0), latents.var(dim=0)
|
|
mean_loss = F.mse_loss(sp_means, tr_means)
|
|
var_loss = F.mse_loss(sp_vars, tr_vars)
|
|
return {self.output: mean_loss, self.var_loss_key: var_loss}
|
|
|
|
|
|
class RandomScaleInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.min_samples = opt['min_samples']
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
if self.min_samples < inp.shape[-1]:
|
|
samples = random.randint(self.min_samples, inp.shape[-1])
|
|
start = random.randint(0, inp.shape[-1]-samples)
|
|
inp = inp[:, :, start:start+samples]
|
|
return {self.output: inp}
|
|
|
|
|
|
def pixel_shuffle_1d(x, upscale_factor):
|
|
batch_size, channels, steps = x.size()
|
|
channels //= upscale_factor
|
|
input_view = x.contiguous().view(batch_size, channels, upscale_factor, steps)
|
|
shuffle_out = input_view.permute(0, 1, 3, 2).contiguous()
|
|
return shuffle_out.view(batch_size, channels, steps * upscale_factor)
|
|
|
|
|
|
def pixel_unshuffle_1d(x, downscale):
|
|
b, c, s = x.size()
|
|
x = x.view(b, c, s//downscale, downscale)
|
|
x = x.permute(0,1,3,2).contiguous()
|
|
x = x.view(b, c*downscale, s//downscale)
|
|
return x
|
|
|
|
|
|
class AudioUnshuffleInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.compression = opt['compression']
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
return {self.output: pixel_unshuffle_1d(inp, self.compression)}
|
|
|
|
|
|
class Mel2vecCodesInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.m2v = get_music_codegen()
|
|
del self.m2v.quantizer.encoder # This is a big memory sink which will not get used.
|
|
self.needs_move = True
|
|
self.inj_vector = opt_get(opt, ['vector'], False)
|
|
|
|
def forward(self, state):
|
|
mels = state[self.input]
|
|
with torch.no_grad():
|
|
if self.needs_move:
|
|
self.m2v = self.m2v.to(mels.device)
|
|
codes = self.m2v.get_codes(mels, project=self.inj_vector)
|
|
return {self.output: codes}
|
|
|
|
|
|
class ClvpTextInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
from scripts.audio.gen.speech_synthesis_utils import load_clvp
|
|
self.clvp = load_clvp()
|
|
del self.clvp.speech_transformer # We will only be using the text transformer.
|
|
self.needs_move = True
|
|
|
|
def forward(self, state):
|
|
codes = state[self.input]
|
|
with torch.no_grad():
|
|
if self.needs_move:
|
|
self.clvp = self.clvp.to(codes.device)
|
|
latents = self.clvp.embed_text(codes)
|
|
return {self.output: latents}
|
|
|
|
|
|
class NormalizeMelInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
|
|
def forward(self, state):
|
|
mel = state[self.input]
|
|
with torch.no_grad():
|
|
return {self.output: normalize_mel(mel)}
|
|
|
|
|
|
class ChannelClipInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.lo = opt['channel_low']
|
|
self.hi = opt['channel_high']
|
|
|
|
def forward(self, state):
|
|
inp = state[self.input]
|
|
return {self.output: inp[:,self.lo:self.hi]}
|
|
|
|
|
|
class MusicCheaterLatentInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
from models.audio.music.gpt_music2 import UpperEncoder
|
|
self.encoder = UpperEncoder(256, 1024, 256).eval()
|
|
self.encoder.load_state_dict(torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')))
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
mel = state[self.input]
|
|
self.encoder = self.encoder.to(mel.device)
|
|
proj = self.encoder(mel)
|
|
return {self.output: proj}
|
|
|
|
|
|
class KmeansQuantizerInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
_, self.centroids = torch.load(opt['centroids'])
|
|
k, b = self.centroids.shape
|
|
self.centroids = self.centroids.permute(1,0)
|
|
|
|
def forward(self, state):
|
|
with torch.no_grad():
|
|
x = state[self.input]
|
|
self.centroids = self.centroids.to(x.device)
|
|
b, c, s = x.shape
|
|
x = x.permute(0,2,1).reshape(b*s, c)
|
|
distances = x.pow(2).sum(1,keepdim=True) - 2 * x @ self.centroids + self.centroids.pow(2).sum(0, keepdim=True)
|
|
distances[distances.isnan()] = 9999999999
|
|
distances = distances.reshape(b, s, self.centroids.shape[-1])
|
|
labels = distances.argmin(-1)
|
|
return {self.output: labels}
|
|
|
|
|
|
class MusicCheaterArInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.cheater_ar = ConditioningAR(1024, layers=24, dropout=0, cond_free_percent=0).eval()
|
|
self.cheater_ar.load_state_dict(torch.load('../experiments/music_cheater_ar.pth', map_location=torch.device('cpu')))
|
|
self.cond_key = opt['cheater_latent_key']
|
|
self.needs_move = True
|
|
|
|
def forward(self, state):
|
|
codes = state[self.input]
|
|
cond = state[self.cond_key]
|
|
if self.needs_move:
|
|
self.cheater_ar = self.cheater_ar.to(codes.device)
|
|
self.needs_move = False
|
|
with torch.no_grad():
|
|
latents = self.cheater_ar(codes, cond, return_latent=True)
|
|
return {self.output: latents}
|