forked from mrq/DL-Art-School
325 lines
14 KiB
Python
325 lines
14 KiB
Python
from time import time
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
|
|
|
from models.tacotron2.text import symbols
|
|
from trainer.networks import register_model
|
|
from utils.util import opt_get
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, chan):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
|
nn.GroupNorm(chan//8, chan),
|
|
nn.ReLU(),
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
|
nn.GroupNorm(chan//8, chan)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return F.relu(self.net(x) + x)
|
|
|
|
|
|
class MelEncoder(nn.Module):
|
|
def __init__(self, channels, mel_channels=80):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=5, padding=2),
|
|
ResBlock(channels//4),
|
|
ResBlock(channels//4),
|
|
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
|
|
nn.GroupNorm(channels//16, channels//2),
|
|
nn.ReLU(),
|
|
ResBlock(channels//2),
|
|
ResBlock(channels//2),
|
|
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
|
|
nn.GroupNorm(channels//8, channels),
|
|
nn.ReLU(),
|
|
ResBlock(channels),
|
|
ResBlock(channels)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.encoder(x)
|
|
|
|
|
|
class GPT2InferenceModel(GPT2PreTrainedModel):
|
|
def __init__(self, config, gpt, text_pos_emb, norm, linear):
|
|
super().__init__(config)
|
|
self.transformer = gpt
|
|
self.text_pos_embedding = text_pos_emb
|
|
self.lm_head = nn.Sequential(norm, linear)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
self.cached_mel_emb = None
|
|
|
|
def parallelize(self, device_map=None):
|
|
self.device_map = (
|
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
|
if device_map is None
|
|
else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.transformer.h))
|
|
self.transformer.parallelize(self.device_map)
|
|
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
|
self.model_parallel = True
|
|
|
|
def deparallelize(self):
|
|
self.transformer.deparallelize()
|
|
self.transformer = self.transformer.to("cpu")
|
|
self.lm_head = self.lm_head.to("cpu")
|
|
self.model_parallel = False
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def store_mel_emb(self, mel_emb):
|
|
self.cached_mel_emb = mel_emb
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
|
|
|
token_type_ids = kwargs.get("token_type_ids", None)
|
|
# only last token for inputs_ids if past is defined in kwargs
|
|
if past:
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
|
|
|
attention_mask = kwargs.get("attention_mask", None)
|
|
position_ids = kwargs.get("position_ids", None)
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past:
|
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
else:
|
|
position_ids = None
|
|
return {
|
|
"input_ids": input_ids,
|
|
"past_key_values": past,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"position_ids": position_ids,
|
|
"attention_mask": attention_mask,
|
|
"token_type_ids": token_type_ids,
|
|
}
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
labels=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
assert self.cached_mel_emb is not None
|
|
assert inputs_embeds is None # Not supported by this inference model.
|
|
assert labels is None # Training not supported by this inference model.
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# Create embedding
|
|
mel_len = self.cached_mel_emb.shape[1]
|
|
if input_ids.shape[1] != 1:
|
|
text_inputs = input_ids[:, mel_len:]
|
|
text_emb = self.transformer.get_input_embeddings()(text_inputs)
|
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_emb.device))
|
|
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
|
mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0)
|
|
else:
|
|
mel_emb = self.cached_mel_emb
|
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
|
else:
|
|
emb = self.transformer.get_input_embeddings()(input_ids) + \
|
|
self.text_pos_embedding(torch.tensor(attention_mask.shape[1]-mel_len, device=attention_mask.device)).unsqueeze(0).unsqueeze(0)
|
|
|
|
transformer_outputs = self.transformer(
|
|
inputs_embeds=emb,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.transformer.first_device)
|
|
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
if not return_dict:
|
|
return (lm_logits,) + transformer_outputs[1:]
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
loss=None,
|
|
logits=lm_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
cross_attentions=transformer_outputs.cross_attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past, beam_idx):
|
|
"""
|
|
This function is used to re-order the :obj:`past_key_values` cache if
|
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
|
"""
|
|
return tuple(
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
for layer_past in past
|
|
)
|
|
|
|
|
|
class GptAsrHf(nn.Module):
|
|
NUMBER_SYMBOLS = len(symbols)
|
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS+1
|
|
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_frames=1000, checkpointing=True):
|
|
super().__init__()
|
|
self.max_mel_frames = max_mel_frames // 4 # Mel frames are reduced by a factor of 4 during encoding.
|
|
self.max_symbols_per_phrase = max_symbols_per_phrase
|
|
|
|
self.model_dim = model_dim
|
|
self.max_mel_frames = self.max_mel_frames
|
|
self.mel_encoder = MelEncoder(model_dim)
|
|
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
|
|
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
|
|
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
|
|
self.gpt_config = GPT2Config(vocab_size=self.NUMBER_TEXT_TOKENS,
|
|
n_positions=seq_length,
|
|
n_ctx=seq_length,
|
|
n_embd=model_dim,
|
|
n_layer=layers,
|
|
n_head=heads,
|
|
gradient_checkpointing=checkpointing,
|
|
use_cache=not checkpointing)
|
|
self.gpt = GPT2Model(self.gpt_config)
|
|
self.final_norm = nn.LayerNorm(model_dim)
|
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
|
|
|
|
|
def get_logits(self, mel_inputs, text_targets, get_attns):
|
|
# Pad front and back. Pad at front is the "START" token.
|
|
text_targets = F.pad(text_targets, (1,0), value=self.NUMBER_SYMBOLS)
|
|
text_targets = F.pad(text_targets, (0, self.max_symbols_per_phrase - text_targets.shape[1]))
|
|
text_emb = self.gpt.get_input_embeddings()(text_targets)
|
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
|
|
mel_emb = self.mel_encoder(mel_inputs)
|
|
mel_emb = F.pad(mel_emb, (0, self.max_mel_frames - mel_emb.shape[-1]))
|
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
|
if get_attns:
|
|
return gpt_out.attentions
|
|
enc = gpt_out.last_hidden_state
|
|
text_logits = self.final_norm(enc[:, self.max_mel_frames:])
|
|
text_logits = self.text_head(text_logits)
|
|
text_logits = text_logits.permute(0,2,1)
|
|
return text_logits
|
|
|
|
def forward(self, mel_inputs, text_targets, return_attentions=False):
|
|
text_logits = self.get_logits(mel_inputs, text_targets, get_attns=return_attentions)
|
|
if return_attentions:
|
|
return text_logits # These weren't really the logits.
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
|
return loss_text.mean(), text_logits
|
|
|
|
def inference(self, mel_inputs, cond_text=None, do_sample=False, temperature=1.0, num_beams=8):
|
|
if not hasattr(self, 'inference_model'):
|
|
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.text_pos_embedding, self.final_norm, self.text_head)
|
|
|
|
mel_emb = self.mel_encoder(mel_inputs)
|
|
assert mel_emb.shape[-1] <= self.max_mel_frames
|
|
mel_emb = F.pad(mel_emb, (0, self.max_mel_frames - mel_emb.shape[-1]))
|
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
|
self.inference_model.store_mel_emb(mel_emb)
|
|
|
|
# "fake_inputs" are stand-ins for the MEL frames, which will be injected with the prep_inputs function above.
|
|
if cond_text is None:
|
|
fake_inputs = torch.full((mel_inputs.shape[0],self.max_mel_frames+1,), fill_value=1, dtype=torch.long, device=mel_inputs.device)
|
|
fake_inputs[:,-1] = self.NUMBER_SYMBOLS
|
|
else:
|
|
cond_used = 10
|
|
fake_inputs = torch.full((mel_inputs.shape[0],self.max_mel_frames+1+cond_used,), fill_value=1, dtype=torch.long, device=mel_inputs.device)
|
|
fake_inputs[:,-1-cond_used] = self.NUMBER_SYMBOLS
|
|
fake_inputs[:, -cond_used:] = cond_text[:, :cond_used]
|
|
gen = self.inference_model.generate(fake_inputs, do_sample=do_sample, bos_token_id=self.NUMBER_SYMBOLS, pad_token_id=0, eos_token_id=0,
|
|
max_length=self.max_symbols_per_phrase+self.max_mel_frames, temperature=temperature, num_beams=num_beams, use_cache=True)
|
|
return gen[:, self.max_mel_frames:]
|
|
|
|
|
|
@register_model
|
|
def register_gpt_asr_hf(opt_net, opt):
|
|
return GptAsrHf(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
# Quick script that loads a model and halves the number of layers, then saves that model.
|
|
def distill():
|
|
gpt = GptAsrHf(max_symbols_per_phrase=250, max_mel_frames=1400, layers=12, model_dim=768, heads=12)
|
|
gpt.load_state_dict(torch.load('../experiments/train_gpt_asr_mass/models/21500_mel_gen.pth'))
|
|
rc = 0
|
|
i = 0
|
|
while i < len(gpt.gpt.layers.layers):
|
|
if rc % 2 != 0:
|
|
del gpt.gpt.layers.layers[i]
|
|
else:
|
|
i += 1
|
|
rc += 1
|
|
torch.save(gpt.state_dict(), '../experiments/train_gpt_asr_mass/models/21500_mel_gen_distilled.pth')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gpt = GptAsrHf(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8)
|
|
#l = gpt(torch.randn(2,80,800), torch.randint(high=len(symbols), size=(2,100)))
|
|
start = time()
|
|
gpt.inference(torch.randn(1,80,350), num_beams=1)
|
|
print(f"Elapsed: {time()-start}")
|
|
|
|
'''
|
|
with torch.no_grad():
|
|
t = torch.randn(1,80,800).cuda()
|
|
start = time()
|
|
s = gpt.inference_beam_topk(t)
|
|
print(time()-start)
|
|
|
|
start = time()
|
|
o = gpt.inference_beam_topk(t, fn='inference_beam_opt')
|
|
print(time()-start)
|
|
'''
|
|
|