forked from mrq/DL-Art-School
129 lines
4.9 KiB
Python
129 lines
4.9 KiB
Python
import torch
|
|
from torch import nn as nn
|
|
|
|
from dlas.models.image_generation.srflow import thops
|
|
from dlas.models.image_generation.srflow.flow import Conv2d, Conv2dZeros
|
|
from dlas.utils.util import opt_get
|
|
|
|
|
|
class CondAffineSeparatedAndCond(nn.Module):
|
|
def __init__(self, in_channels, opt):
|
|
super().__init__()
|
|
self.need_features = True
|
|
self.in_channels = in_channels
|
|
self.in_channels_rrdb = 320
|
|
self.kernel_hidden = 1
|
|
self.affine_eps = 0.0001
|
|
self.n_hidden_layers = 1
|
|
hidden_channels = opt_get(
|
|
opt, ['networks', 'generator', 'flow', 'CondAffineSeparatedAndCond', 'hidden_channels'])
|
|
self.hidden_channels = 64 if hidden_channels is None else hidden_channels
|
|
|
|
self.affine_eps = opt_get(
|
|
opt, ['networks', 'generator', 'flow', 'CondAffineSeparatedAndCond', 'eps'], 0.0001)
|
|
|
|
self.channels_for_nn = self.in_channels // 2
|
|
self.channels_for_co = self.in_channels - self.channels_for_nn
|
|
|
|
if self.channels_for_nn is None:
|
|
self.channels_for_nn = self.in_channels // 2
|
|
|
|
self.fAffine = self.F(in_channels=self.channels_for_nn + self.in_channels_rrdb,
|
|
out_channels=self.channels_for_co * 2,
|
|
hidden_channels=self.hidden_channels,
|
|
kernel_hidden=self.kernel_hidden,
|
|
n_hidden_layers=self.n_hidden_layers)
|
|
|
|
self.fFeatures = self.F(in_channels=self.in_channels_rrdb,
|
|
out_channels=self.in_channels * 2,
|
|
hidden_channels=self.hidden_channels,
|
|
kernel_hidden=self.kernel_hidden,
|
|
n_hidden_layers=self.n_hidden_layers)
|
|
|
|
def forward(self, input: torch.Tensor, logdet=None, reverse=False, ft=None):
|
|
if not reverse:
|
|
z = input
|
|
assert z.shape[1] == self.in_channels, (
|
|
z.shape[1], self.in_channels)
|
|
|
|
# Feature Conditional
|
|
scaleFt, shiftFt = self.feature_extract(ft, self.fFeatures)
|
|
z = z + shiftFt
|
|
z = z * scaleFt
|
|
logdet = logdet + self.get_logdet(scaleFt)
|
|
|
|
# Self Conditional
|
|
z1, z2 = self.split(z)
|
|
scale, shift = self.feature_extract_aff(z1, ft, self.fAffine)
|
|
self.asserts(scale, shift, z1, z2)
|
|
z2 = z2 + shift
|
|
z2 = z2 * scale
|
|
|
|
logdet = logdet + self.get_logdet(scale)
|
|
z = thops.cat_feature(z1, z2)
|
|
output = z
|
|
else:
|
|
z = input
|
|
|
|
# Self Conditional
|
|
z1, z2 = self.split(z)
|
|
scale, shift = self.feature_extract_aff(z1, ft, self.fAffine)
|
|
self.asserts(scale, shift, z1, z2)
|
|
z2 = z2 / scale
|
|
z2 = z2 - shift
|
|
z = thops.cat_feature(z1, z2)
|
|
logdet = logdet - self.get_logdet(scale)
|
|
|
|
# Feature Conditional
|
|
scaleFt, shiftFt = self.feature_extract(ft, self.fFeatures)
|
|
z = z / scaleFt
|
|
z = z - shiftFt
|
|
logdet = logdet - self.get_logdet(scaleFt)
|
|
|
|
output = z
|
|
return output, logdet
|
|
|
|
def asserts(self, scale, shift, z1, z2):
|
|
assert z1.shape[1] == self.channels_for_nn, (
|
|
z1.shape[1], self.channels_for_nn)
|
|
assert z2.shape[1] == self.channels_for_co, (
|
|
z2.shape[1], self.channels_for_co)
|
|
assert scale.shape[1] == shift.shape[1], (
|
|
scale.shape[1], shift.shape[1])
|
|
assert scale.shape[1] == z2.shape[1], (
|
|
scale.shape[1], z1.shape[1], z2.shape[1])
|
|
|
|
def get_logdet(self, scale):
|
|
return thops.sum(torch.log(scale), dim=[1, 2, 3])
|
|
|
|
def feature_extract(self, z, f):
|
|
h = f(z)
|
|
shift, scale = thops.split_feature(h, "cross")
|
|
scale = (torch.sigmoid(scale + 2.) + self.affine_eps)
|
|
return scale, shift
|
|
|
|
def feature_extract_aff(self, z1, ft, f):
|
|
z = torch.cat([z1, ft], dim=1)
|
|
h = f(z)
|
|
shift, scale = thops.split_feature(h, "cross")
|
|
scale = (torch.sigmoid(scale + 2.) + self.affine_eps)
|
|
return scale, shift
|
|
|
|
def split(self, z):
|
|
z1 = z[:, :self.channels_for_nn]
|
|
z2 = z[:, self.channels_for_nn:]
|
|
assert z1.shape[1] + \
|
|
z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1])
|
|
return z1, z2
|
|
|
|
def F(self, in_channels, out_channels, hidden_channels, kernel_hidden=1, n_hidden_layers=1):
|
|
layers = [Conv2d(in_channels, hidden_channels), nn.ReLU(inplace=False)]
|
|
|
|
for _ in range(n_hidden_layers):
|
|
layers.append(Conv2d(hidden_channels, hidden_channels,
|
|
kernel_size=[kernel_hidden, kernel_hidden]))
|
|
layers.append(nn.ReLU(inplace=False))
|
|
layers.append(Conv2dZeros(hidden_channels, out_channels))
|
|
|
|
return nn.Sequential(*layers)
|