forked from mrq/DL-Art-School
203 lines
7.4 KiB
Python
203 lines
7.4 KiB
Python
import copy
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from dlas.data.images.byol_attachment import reconstructed_shared_regions
|
|
from dlas.models.image_latents.byol.byol_model_wrapper import (
|
|
EMA, get_module_device, set_requires_grad, singleton,
|
|
update_moving_average)
|
|
from dlas.trainer.networks import create_model, register_model
|
|
from dlas.utils.util import checkpoint
|
|
|
|
|
|
# loss function
|
|
def structural_loss_fn(x, y):
|
|
# Combine the structural dimensions into the batch dimension, then compute the "normal" BYOL loss.
|
|
x = x.permute(0, 2, 3, 1).flatten(0, 2)
|
|
y = y.permute(0, 2, 3, 1).flatten(0, 2)
|
|
x = F.normalize(x, dim=-1, p=2)
|
|
y = F.normalize(y, dim=-1, p=2)
|
|
return 2 - 2 * (x * y).sum(dim=-1)
|
|
|
|
|
|
class StructuralTail(nn.Module):
|
|
def __init__(self, channels, projection_size, hidden_size=512):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(channels, hidden_size, kernel_size=1),
|
|
nn.BatchNorm2d(hidden_size),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(hidden_size, projection_size, kernel_size=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
# a wrapper class for the base neural network
|
|
# will manage the interception of the hidden layer output
|
|
# and pipe it into the projecter and predictor nets
|
|
class NetWrapper(nn.Module):
|
|
def __init__(self, net, projection_size, projection_hidden_size, layer=-2):
|
|
super().__init__()
|
|
self.net = net
|
|
self.layer = layer
|
|
|
|
self.projector = None
|
|
self.projection_size = projection_size
|
|
self.projection_hidden_size = projection_hidden_size
|
|
|
|
self.hidden = None
|
|
self.hook_registered = False
|
|
|
|
def _find_layer(self):
|
|
if type(self.layer) == str:
|
|
modules = dict([*self.net.named_modules()])
|
|
return modules.get(self.layer, None)
|
|
elif type(self.layer) == int:
|
|
children = [*self.net.children()]
|
|
return children[self.layer]
|
|
return None
|
|
|
|
def _hook(self, _, __, output):
|
|
self.hidden = output
|
|
|
|
def _register_hook(self):
|
|
layer = self._find_layer()
|
|
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
|
handle = layer.register_forward_hook(self._hook)
|
|
self.hook_registered = True
|
|
|
|
@singleton('projector')
|
|
def _get_projector(self, hidden):
|
|
projector = StructuralTail(
|
|
hidden.shape[1], self.projection_size, self.projection_hidden_size)
|
|
return projector.to(hidden)
|
|
|
|
def get_representation(self, x):
|
|
if self.layer == -1:
|
|
return self.net(x)
|
|
|
|
if not self.hook_registered:
|
|
self._register_hook()
|
|
|
|
unused = self.net(x)
|
|
hidden = self.hidden
|
|
self.hidden = None
|
|
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
|
return hidden
|
|
|
|
def forward(self, x):
|
|
representation = self.get_representation(x)
|
|
projector = self._get_projector(representation)
|
|
projection = checkpoint(projector, representation)
|
|
return projection
|
|
|
|
|
|
class StructuralBYOL(nn.Module):
|
|
def __init__(
|
|
self,
|
|
net,
|
|
image_size,
|
|
hidden_layer=-2,
|
|
projection_size=256,
|
|
projection_hidden_size=512,
|
|
moving_average_decay=0.99,
|
|
use_momentum=True,
|
|
pretrained_state_dict=None,
|
|
freeze_until=0
|
|
):
|
|
super().__init__()
|
|
|
|
if pretrained_state_dict:
|
|
net.load_state_dict(torch.load(pretrained_state_dict), strict=True)
|
|
self.freeze_until = freeze_until
|
|
self.frozen = False
|
|
if self.freeze_until > 0:
|
|
for p in net.parameters():
|
|
p.DO_NOT_TRAIN = True
|
|
self.frozen = True
|
|
self.online_encoder = NetWrapper(
|
|
net, projection_size, projection_hidden_size, layer=hidden_layer)
|
|
|
|
self.use_momentum = use_momentum
|
|
self.target_encoder = None
|
|
self.target_ema_updater = EMA(moving_average_decay)
|
|
|
|
self.online_predictor = StructuralTail(
|
|
projection_size, projection_size, projection_hidden_size)
|
|
|
|
# get device of network and make wrapper same device
|
|
device = get_module_device(net)
|
|
self.to(device)
|
|
|
|
# send a mock image tensor to instantiate singleton parameters
|
|
self.forward(torch.randn(2, 3, image_size, image_size, device=device),
|
|
torch.randn(2, 3, image_size, image_size, device=device), None)
|
|
|
|
@singleton('target_encoder')
|
|
def _get_target_encoder(self):
|
|
target_encoder = copy.deepcopy(self.online_encoder)
|
|
set_requires_grad(target_encoder, False)
|
|
return target_encoder
|
|
|
|
def reset_moving_average(self):
|
|
del self.target_encoder
|
|
self.target_encoder = None
|
|
|
|
def update_for_step(self, step, __):
|
|
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
|
|
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
|
update_moving_average(self.target_ema_updater,
|
|
self.target_encoder, self.online_encoder)
|
|
if self.frozen and self.freeze_until < step:
|
|
print("Unfreezing model weights. Let the latent training commence..")
|
|
for p in self.online_encoder.net.parameters():
|
|
del p.DO_NOT_TRAIN
|
|
self.frozen = False
|
|
|
|
def forward(self, image_one, image_two, similar_region_params):
|
|
online_proj_one = self.online_encoder(image_one)
|
|
online_proj_two = self.online_encoder(image_two)
|
|
|
|
online_pred_one = self.online_predictor(online_proj_one)
|
|
online_pred_two = self.online_predictor(online_proj_two)
|
|
|
|
with torch.no_grad():
|
|
target_encoder = self._get_target_encoder(
|
|
) if self.use_momentum else self.online_encoder
|
|
target_proj_one = target_encoder(image_one).detach()
|
|
target_proj_two = target_encoder(image_two).detach()
|
|
|
|
# In the structural BYOL, only the regions of the source image that are shared between the two augments are
|
|
# compared. These regions can be extracted from the latents using `reconstruct_shared_regions`.
|
|
if similar_region_params is not None:
|
|
online_pred_one, target_proj_two = reconstructed_shared_regions(
|
|
online_pred_one, target_proj_two, similar_region_params)
|
|
loss_one = structural_loss_fn(
|
|
online_pred_one, target_proj_two.detach())
|
|
if similar_region_params is not None:
|
|
online_pred_two, target_proj_one = reconstructed_shared_regions(
|
|
online_pred_two, target_proj_one, similar_region_params)
|
|
loss_two = structural_loss_fn(
|
|
online_pred_two, target_proj_one.detach())
|
|
|
|
loss = loss_one + loss_two
|
|
return loss.mean()
|
|
|
|
def get_projection(self, image):
|
|
enc = self.online_encoder(image)
|
|
proj = self.online_predictor(enc)
|
|
return enc, proj
|
|
|
|
|
|
@register_model
|
|
def register_structural_byol(opt_net, opt):
|
|
subnet = create_model(opt, opt_net['subnet'])
|
|
return StructuralBYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
|
|
pretrained_state_dict=opt_get(
|
|
opt_net, ["pretrained_path"]),
|
|
freeze_until=opt_get(opt_net, ['freeze_until'], 0))
|