DL-Art-School/codes/data/audio/preprocessed_mel_dataset.py

72 lines
2.0 KiB
Python

import os
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
import torchvision
from tqdm import tqdm
from utils.util import opt_get
class PreprocessedMelDataset(torch.utils.data.Dataset):
def __init__(self, opt):
path = opt['path']
cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case.
if os.path.exists(cache_path):
self.paths = torch.load(cache_path)
else:
path = Path(path)
self.paths = [str(p) for p in path.rglob("*.npz")]
torch.save(self.paths, cache_path)
self.pad_to = opt_get(opt, ['pad_to_samples'], 10336)
def __getitem__(self, index):
with np.load(self.paths[index]) as npz_file:
mel = torch.tensor(npz_file['arr_0'])
assert mel.shape[-1] <= self.pad_to
padding_needed = self.pad_to - mel.shape[-1]
mask = torch.zeros_like(mel)
if padding_needed > 0:
mel = F.pad(mel, (0,padding_needed))
mask = F.pad(mask, (0,padding_needed), value=1)
output = {
'mel': mel,
'mel_lengths': torch.tensor(mel.shape[-1]),
'mask': mask,
'mask_lengths': torch.tensor(mask.shape[-1]),
'path': self.paths[index],
}
return output
def __len__(self):
return len(self.paths)
if __name__ == '__main__':
params = {
'mode': 'preprocessed_mel',
'path': 'Y:\\separated\\large_mels',
'cache_path': 'Y:\\separated\\large_mels.pth',
'pad_to_samples': 10336,
'phase': 'train',
'n_workers': 0,
'batch_size': 16,
}
from data import create_dataset, create_dataloader
ds = create_dataset(params)
dl = create_dataloader(ds, params)
i = 0
for b in tqdm(dl):
#pass
torchvision.utils.save_image((b['mel'].unsqueeze(1)+1)/2, f'{i}.png')
i += 1
if i > 20:
break