DL-Art-School/codes/models/audio/music/music_quantizer.py
2022-05-31 21:06:54 -06:00

236 lines
9.4 KiB
Python

import torch
from torch import nn
import torch.nn.functional as F
from models.arch_util import zero_module
from trainer.networks import register_model
class Downsample(nn.Module):
def __init__(self, chan_in, chan_out):
super().__init__()
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=.5, mode='linear')
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, chan_in, chan_out):
super().__init__()
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size=3, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode='linear')
x = self.conv(x)
return x
class ResBlock(nn.Module):
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, 3, padding = 1),
nn.GroupNorm(8, chan),
nn.SiLU(),
nn.Conv1d(chan, chan, 3, padding = 1),
nn.GroupNorm(8, chan),
nn.SiLU(),
zero_module(nn.Conv1d(chan, chan, 3, padding = 1)),
)
def forward(self, x):
return self.net(x) + x
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, proj_dim=1024, codevector_dim=512, num_codevector_groups=2, num_codevectors_per_group=320):
super().__init__()
self.codevector_dim = codevector_dim
self.num_groups = num_codevector_groups
self.num_vars = num_codevectors_per_group
self.num_codevectors = num_codevector_groups * num_codevectors_per_group
if codevector_dim % self.num_groups != 0:
raise ValueError(
f"`codevector_dim {codevector_dim} must be divisible "
f"by `num_codevector_groups` {num_codevector_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(proj_dim, self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
# Parameters init.
self.weight_proj.weight.data.normal_(mean=0.0, std=1)
self.weight_proj.bias.data.zero_()
nn.init.uniform_(self.codevectors)
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def get_codes(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
codevector_idx = hidden_states.argmax(dim=-1)
idxs = codevector_idx.view(batch_size, sequence_length, self.num_groups)
return idxs
def forward(self, hidden_states, mask_time_indices=None, return_probs=False):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# compute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = (
codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
.sum(-2)
.view(batch_size, sequence_length, -1)
)
if return_probs:
return codevectors, perplexity, codevector_probs.view(batch_size, sequence_length, self.num_groups, self.num_vars)
return codevectors, perplexity
class MusicQuantizer(nn.Module):
def __init__(self, inp_channels=256, inner_dim=1024, codevector_dim=1024, down_steps=2,
max_gumbel_temperature=2.0, min_gumbel_temperature=.5, gumbel_temperature_decay=.999995,
codebook_size=16, codebook_groups=4):
super().__init__()
self.max_gumbel_temperature = max_gumbel_temperature
self.min_gumbel_temperature = min_gumbel_temperature
self.gumbel_temperature_decay = gumbel_temperature_decay
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim, codevector_dim=codevector_dim,
num_codevector_groups=codebook_groups,
num_codevectors_per_group=codebook_size)
self.num_losses_record = []
if down_steps == 0:
self.down = nn.Conv1d(inp_channels, inner_dim, kernel_size=3, padding=1)
self.up = nn.Conv1d(inner_dim, inp_channels, kernel_size=3, padding=1)
elif down_steps == 2:
self.down = nn.Sequential(nn.Conv1d(inp_channels, inner_dim//4, kernel_size=3, padding=1),
Downsample(inner_dim//4, inner_dim//2),
Downsample(inner_dim//2, inner_dim))
self.up = nn.Sequential(Upsample(inner_dim, inner_dim//2),
Upsample(inner_dim//2, inner_dim//4),
nn.Conv1d(inner_dim//4, inp_channels, kernel_size=3, padding=1))
self.encoder = nn.Sequential(ResBlock(inner_dim),
ResBlock(inner_dim),
ResBlock(inner_dim))
self.enc_norm = nn.LayerNorm(inner_dim, eps=1e-5)
self.decoder = nn.Sequential(nn.Conv1d(codevector_dim, inner_dim, kernel_size=3, padding=1),
ResBlock(inner_dim),
ResBlock(inner_dim),
ResBlock(inner_dim))
self.codes = torch.zeros((3000000,), dtype=torch.long)
self.internal_step = 0
self.code_ind = 0
self.total_codes = 0
def get_codes(self, mel, project=False):
proj = self.m2v.input_blocks(mel).permute(0,2,1)
_, proj = self.m2v.projector(proj)
if project:
proj, _ = self.quantizer(proj)
return proj
else:
return self.quantizer.get_codes(proj)
def forward(self, mel):
h = self.down(mel)
h = self.encoder(h)
h = self.enc_norm(h.permute(0,2,1))
codevectors, perplexity, codes = self.quantizer(h, return_probs=True)
h = self.decoder(codevectors.permute(0,2,1))
reconstructed = self.up(h)
mse = F.mse_loss(reconstructed, mel)
diversity = (self.quantizer.num_codevectors - perplexity) / self.quantizer.num_codevectors
self.log_codes(codes)
return mse, diversity
def log_codes(self, codes):
if self.internal_step % 5 == 0:
codes = torch.argmax(codes, dim=-1)
codes = codes[:,:,0] + codes[:,:,1] * 16 + codes[:,:,2] * 16 ** 2 + codes[:,:,3] * 16 ** 3
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.total_codes += 1
def get_debug_values(self, step, __):
if self.total_codes > 0:
return {'histogram_codes': self.codes[:self.total_codes]}
else:
return {}
@register_model
def register_music_quantizer(opt_net, opt):
return MusicQuantizer(**opt_net['kwargs'])
if __name__ == '__main__':
model = MusicQuantizer()
mel = torch.randn((2,256,200))
model(mel)