DL-Art-School/codes/models/image_latents/byol/byol_model_wrapper.py
2022-03-16 12:04:00 -06:00

286 lines
9.8 KiB
Python

import copy
import os
from functools import wraps
import kornia.augmentation as augs
import torch
import torch.nn.functional as F
import torchvision
from kornia import filters
from torch import nn
from data.byol_attachment import RandomApply
from trainer.networks import register_model, create_model
from utils.util import checkpoint, opt_get
def default(val, def_val):
return def_val if val is None else val
def flatten(t):
return t.reshape(t.shape[0], -1)
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
# loss fn
def loss_fn(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# MLP class for projector and predictor
class MLP(nn.Module):
def __init__(self, dim, projection_size, hidden_size=4096):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size)
)
def forward(self, x):
x = flatten(x)
return self.net(x)
# A wrapper class for training against networks that do not collapse into a small-dimensioned latent.
class StructuralMLP(nn.Module):
def __init__(self, dim, projection_size, hidden_size=4096):
super().__init__()
b, c, h, w = dim
flattened_dim = c * h // 4 * w // 4
self.net = nn.Sequential(
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
nn.BatchNorm2d(c),
nn.ReLU(inplace=True),
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
nn.BatchNorm2d(c),
nn.ReLU(inplace=True),
nn.Flatten(),
nn.Linear(flattened_dim, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size)
)
def forward(self, x):
return self.net(x)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False):
super().__init__()
self.net = net
self.layer = layer
self.projector = None
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.structural_mlp = use_structural_mlp
self.hidden = None
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, __, output):
self.hidden = output
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
@singleton('projector')
def _get_projector(self, hidden):
if self.structural_mlp:
projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size)
else:
_, dim = hidden.flatten(1,-1).shape
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
def get_representation(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
unused = self.net(x)
hidden = self.hidden
self.hidden = None
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
def forward(self, x):
representation = self.get_representation(x)
projector = self._get_projector(representation)
projection = checkpoint(projector, representation)
return projection
class BYOL(nn.Module):
def __init__(
self,
net,
image_size,
hidden_layer=-2,
projection_size=256,
projection_hidden_size=4096,
moving_average_decay=0.99,
use_momentum=True,
structural_mlp=False,
positional_dimension=2, # 2 for images, 1 for audio, everything else isn't supported.
perform_augmentation=True,
):
super().__init__()
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer,
use_structural_mlp=structural_mlp)
self.perform_augmentation = perform_augmentation
if self.perform_augmentation:
augmentations = [ \
RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
augs.RandomGrayscale(p=0.2),
augs.RandomHorizontalFlip(),
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
augs.RandomResizedCrop((image_size, image_size))]
self.aug = nn.Sequential(*augmentations)
self.use_momentum = use_momentum
self.target_encoder = None
self.target_ema_updater = EMA(moving_average_decay)
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
# get device of network and make wrapper same device
device = get_module_device(net)
self.to(device)
# send a mock image tensor to instantiate singleton parameters
self.positional_dimension = positional_dimension
if positional_dimension == 2:
self.forward(torch.randn(2, 3, image_size, image_size, device=device),
torch.randn(2, 3, image_size, image_size, device=device))
else:
self.forward(torch.randn(2, 1, 48000, device=device),
torch.randn(2, 1, 48000, device=device))
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
for p in target_encoder.parameters():
p.DO_NOT_TRAIN = True
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_for_step(self, step, __):
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def get_debug_values(self, step, __):
# In the BYOL paper, this is made to increase over time. Not yet implemented, but still logging the value.
return {'target_ema_beta': self.target_ema_updater.beta}
def visual_dbg(self, step, path):
if self.perform_augmentation and self.positional_dimension == 2:
torchvision.utils.save_image(self.im1.cpu().float(), os.path.join(path, "%i_image1.png" % (step,)))
torchvision.utils.save_image(self.im2.cpu().float(), os.path.join(path, "%i_image2.png" % (step,)))
def forward(self, image_one, image_two):
if self.perform_augmentation:
image_one = self.aug(image_one.clone())
image_two = self.aug(image_two.clone())
# Keep copies on hand for visual_dbg.
self.im1 = image_one.detach().clone()
self.im2 = image_two.detach().clone()
online_proj_one = self.online_encoder(image_one)
online_proj_two = self.online_encoder(image_two)
online_pred_one = self.online_predictor(online_proj_one)
online_pred_two = self.online_predictor(online_proj_two)
with torch.no_grad():
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
target_proj_one = target_encoder(image_one).detach()
target_proj_two = target_encoder(image_two).detach()
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
loss = loss_one + loss_two
return loss.mean()
@register_model
def register_byol(opt_net, opt):
subnet = create_model(opt, opt_net['subnet'])
return BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
structural_mlp=opt_get(opt_net, ['use_structural_mlp'], False),
positional_dimension=opt_get(opt_net, ['positional_dims'], 2),
perform_augmentation=opt_get(opt_net, ['aug_enable'], True))